关于多色图兰数字

IF 0.9 3区 数学 Q2 MATHEMATICS
József Balogh, Anita Liebenau, Letícia Mattos, Natasha Morrison
{"title":"关于多色图兰数字","authors":"József Balogh, Anita Liebenau, Letícia Mattos, Natasha Morrison","doi":"10.1137/24m1639488","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Discrete Mathematics, Volume 38, Issue 3, Page 2297-2311, September 2024. <br/> Abstract. We address a problem which is a generalization of Turán-type problems recently introduced by Imolay, Karl, Nagy, and Váli. Let [math] be a fixed graph and let [math] be the union of [math] edge-disjoint copies of [math], namely [math], where each [math] is isomorphic to a fixed graph [math] and [math] for all [math]. We call a subgraph [math] multicolored if [math] and [math] share at most one edge for all [math]. Define [math] to be the maximum value [math] such that there exists [math] on [math] vertices without a multicolored copy of [math]. We show that [math] and that all extremal graphs are close to a blow-up of the 5-cycle. This bound is tight up to the linear error term.","PeriodicalId":49530,"journal":{"name":"SIAM Journal on Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Multicolor Turán Numbers\",\"authors\":\"József Balogh, Anita Liebenau, Letícia Mattos, Natasha Morrison\",\"doi\":\"10.1137/24m1639488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Discrete Mathematics, Volume 38, Issue 3, Page 2297-2311, September 2024. <br/> Abstract. We address a problem which is a generalization of Turán-type problems recently introduced by Imolay, Karl, Nagy, and Váli. Let [math] be a fixed graph and let [math] be the union of [math] edge-disjoint copies of [math], namely [math], where each [math] is isomorphic to a fixed graph [math] and [math] for all [math]. We call a subgraph [math] multicolored if [math] and [math] share at most one edge for all [math]. Define [math] to be the maximum value [math] such that there exists [math] on [math] vertices without a multicolored copy of [math]. We show that [math] and that all extremal graphs are close to a blow-up of the 5-cycle. This bound is tight up to the linear error term.\",\"PeriodicalId\":49530,\"journal\":{\"name\":\"SIAM Journal on Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/24m1639488\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1639488","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 离散数学杂志》,第 38 卷第 3 期,第 2297-2311 页,2024 年 9 月。 摘要。我们要解决的问题是伊莫莱、卡尔、纳吉和瓦利最近提出的图兰型问题的一般化。设 [math] 是一个固定图,[math] 是 [math] 边缘相交的副本的联合,即 [math],其中每个 [math] 都与一个固定图 [math] 和 [math] 同构。如果[math]和[math]在所有[math]中最多共享一条边,我们就称子图[math]为多色图。定义 [math] 为最大值 [math],使得 [math] 顶点上存在 [math] 而没有 [math] 的多色副本。我们证明,[math] 以及所有极值图都接近于 5 循环的炸裂。这个约束在线性误差项以内都是紧密的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Multicolor Turán Numbers
SIAM Journal on Discrete Mathematics, Volume 38, Issue 3, Page 2297-2311, September 2024.
Abstract. We address a problem which is a generalization of Turán-type problems recently introduced by Imolay, Karl, Nagy, and Váli. Let [math] be a fixed graph and let [math] be the union of [math] edge-disjoint copies of [math], namely [math], where each [math] is isomorphic to a fixed graph [math] and [math] for all [math]. We call a subgraph [math] multicolored if [math] and [math] share at most one edge for all [math]. Define [math] to be the maximum value [math] such that there exists [math] on [math] vertices without a multicolored copy of [math]. We show that [math] and that all extremal graphs are close to a blow-up of the 5-cycle. This bound is tight up to the linear error term.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Discrete Mathematics (SIDMA) publishes research papers of exceptional quality in pure and applied discrete mathematics, broadly interpreted. The journal''s focus is primarily theoretical rather than empirical, but the editors welcome papers that evolve from or have potential application to real-world problems. Submissions must be clearly written and make a significant contribution. Topics include but are not limited to: properties of and extremal problems for discrete structures combinatorial optimization, including approximation algorithms algebraic and enumerative combinatorics coding and information theory additive, analytic combinatorics and number theory combinatorial matrix theory and spectral graph theory design and analysis of algorithms for discrete structures discrete problems in computational complexity discrete and computational geometry discrete methods in computational biology, and bioinformatics probabilistic methods and randomized algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信