{"title":"用于人群计数的注意力注入式规模聚合网络","authors":"Haojie Zou, Yingchun Kuang, Jianqiang Luo, Mingwei Yao, Haoyu Zhou, Sha Yang","doi":"10.1117/1.jei.33.5.053008","DOIUrl":null,"url":null,"abstract":"Crowd counting has gained widespread attention in the fields of public safety management, video surveillance, and emergency response. Currently, background interference and scale variation of the head are still intractable problems. We propose an attention-injective scale aggregation network (ASANet) to cope with the above problems. ASANet consists of three parts: shallow feature attention network (SFAN), multi-level feature aggregation (MLFA) module, and density map generation (DMG) network. SFAN effectively overcomes the noise impact of a cluttered background by cross-injecting the attention module in the truncated VGG16 structure. To fully utilize the multi-scale crowd information embedded in the feature layers at different positions, we densely connect the multi-layer feature maps in the MLFA module to solve the scale variation problem. In addition, to capture large-scale head information, the DMG network introduces successive dilated convolutional layers to further expand the receptive field of the model, thus improving the accuracy of crowd counting. We conduct extensive experiments on five public datasets (ShanghaiTech Part_A, ShanghaiTech Part_B, UCF_QNRF, UCF_CC_50, JHU-Crowd++), and the results show that ASANet outperforms most of the existing methods in terms of counting and at the same time demonstrates satisfactory superiority in dealing with background noise in different scenes.","PeriodicalId":54843,"journal":{"name":"Journal of Electronic Imaging","volume":"94 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attention-injective scale aggregation network for crowd counting\",\"authors\":\"Haojie Zou, Yingchun Kuang, Jianqiang Luo, Mingwei Yao, Haoyu Zhou, Sha Yang\",\"doi\":\"10.1117/1.jei.33.5.053008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crowd counting has gained widespread attention in the fields of public safety management, video surveillance, and emergency response. Currently, background interference and scale variation of the head are still intractable problems. We propose an attention-injective scale aggregation network (ASANet) to cope with the above problems. ASANet consists of three parts: shallow feature attention network (SFAN), multi-level feature aggregation (MLFA) module, and density map generation (DMG) network. SFAN effectively overcomes the noise impact of a cluttered background by cross-injecting the attention module in the truncated VGG16 structure. To fully utilize the multi-scale crowd information embedded in the feature layers at different positions, we densely connect the multi-layer feature maps in the MLFA module to solve the scale variation problem. In addition, to capture large-scale head information, the DMG network introduces successive dilated convolutional layers to further expand the receptive field of the model, thus improving the accuracy of crowd counting. We conduct extensive experiments on five public datasets (ShanghaiTech Part_A, ShanghaiTech Part_B, UCF_QNRF, UCF_CC_50, JHU-Crowd++), and the results show that ASANet outperforms most of the existing methods in terms of counting and at the same time demonstrates satisfactory superiority in dealing with background noise in different scenes.\",\"PeriodicalId\":54843,\"journal\":{\"name\":\"Journal of Electronic Imaging\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Imaging\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jei.33.5.053008\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Imaging","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1117/1.jei.33.5.053008","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Attention-injective scale aggregation network for crowd counting
Crowd counting has gained widespread attention in the fields of public safety management, video surveillance, and emergency response. Currently, background interference and scale variation of the head are still intractable problems. We propose an attention-injective scale aggregation network (ASANet) to cope with the above problems. ASANet consists of three parts: shallow feature attention network (SFAN), multi-level feature aggregation (MLFA) module, and density map generation (DMG) network. SFAN effectively overcomes the noise impact of a cluttered background by cross-injecting the attention module in the truncated VGG16 structure. To fully utilize the multi-scale crowd information embedded in the feature layers at different positions, we densely connect the multi-layer feature maps in the MLFA module to solve the scale variation problem. In addition, to capture large-scale head information, the DMG network introduces successive dilated convolutional layers to further expand the receptive field of the model, thus improving the accuracy of crowd counting. We conduct extensive experiments on five public datasets (ShanghaiTech Part_A, ShanghaiTech Part_B, UCF_QNRF, UCF_CC_50, JHU-Crowd++), and the results show that ASANet outperforms most of the existing methods in terms of counting and at the same time demonstrates satisfactory superiority in dealing with background noise in different scenes.
期刊介绍:
The Journal of Electronic Imaging publishes peer-reviewed papers in all technology areas that make up the field of electronic imaging and are normally considered in the design, engineering, and applications of electronic imaging systems.