{"title":"基于特征增强和相互注意的光场突出物体检测网络","authors":"Xi Zhu, Huai Xia, Xucheng Wang, Zhenrong Zheng","doi":"10.1117/1.jei.33.5.053001","DOIUrl":null,"url":null,"abstract":"Light field salient object detection (SOD) is an essential research topic in computer vision, but robust saliency detection in complex scenes is still very challenging. We propose a new method for accurate and robust light field SOD via convolutional neural networks containing feature enhancement modules. First, the light field dataset is extended by geometric transformations such as stretching, cropping, flipping, and rotating. Next, two feature enhancement modules are designed to extract features from RGB images and depth maps, respectively. The obtained feature maps are fed into a two-stream network to train the light field SOD. We propose a mutual attention approach in this process, extracting and fusing features from RGB images and depth maps. Therefore, our network can generate an accurate saliency map from the input light field images after training. The obtained saliency map can provide reliable a priori information for tasks such as semantic segmentation, target recognition, and visual tracking. Experimental results show that the proposed method achieves excellent detection performance in public benchmark datasets and outperforms the state-of-the-art methods. We also verify the generalization and stability of the method in real-world experiments.","PeriodicalId":54843,"journal":{"name":"Journal of Electronic Imaging","volume":"8 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Light field salient object detection network based on feature enhancement and mutual attention\",\"authors\":\"Xi Zhu, Huai Xia, Xucheng Wang, Zhenrong Zheng\",\"doi\":\"10.1117/1.jei.33.5.053001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Light field salient object detection (SOD) is an essential research topic in computer vision, but robust saliency detection in complex scenes is still very challenging. We propose a new method for accurate and robust light field SOD via convolutional neural networks containing feature enhancement modules. First, the light field dataset is extended by geometric transformations such as stretching, cropping, flipping, and rotating. Next, two feature enhancement modules are designed to extract features from RGB images and depth maps, respectively. The obtained feature maps are fed into a two-stream network to train the light field SOD. We propose a mutual attention approach in this process, extracting and fusing features from RGB images and depth maps. Therefore, our network can generate an accurate saliency map from the input light field images after training. The obtained saliency map can provide reliable a priori information for tasks such as semantic segmentation, target recognition, and visual tracking. Experimental results show that the proposed method achieves excellent detection performance in public benchmark datasets and outperforms the state-of-the-art methods. We also verify the generalization and stability of the method in real-world experiments.\",\"PeriodicalId\":54843,\"journal\":{\"name\":\"Journal of Electronic Imaging\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Imaging\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jei.33.5.053001\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Imaging","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1117/1.jei.33.5.053001","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Light field salient object detection network based on feature enhancement and mutual attention
Light field salient object detection (SOD) is an essential research topic in computer vision, but robust saliency detection in complex scenes is still very challenging. We propose a new method for accurate and robust light field SOD via convolutional neural networks containing feature enhancement modules. First, the light field dataset is extended by geometric transformations such as stretching, cropping, flipping, and rotating. Next, two feature enhancement modules are designed to extract features from RGB images and depth maps, respectively. The obtained feature maps are fed into a two-stream network to train the light field SOD. We propose a mutual attention approach in this process, extracting and fusing features from RGB images and depth maps. Therefore, our network can generate an accurate saliency map from the input light field images after training. The obtained saliency map can provide reliable a priori information for tasks such as semantic segmentation, target recognition, and visual tracking. Experimental results show that the proposed method achieves excellent detection performance in public benchmark datasets and outperforms the state-of-the-art methods. We also verify the generalization and stability of the method in real-world experiments.
期刊介绍:
The Journal of Electronic Imaging publishes peer-reviewed papers in all technology areas that make up the field of electronic imaging and are normally considered in the design, engineering, and applications of electronic imaging systems.