{"title":"图中的泄漏强迫,实现网络的弹性可控性","authors":"Waseem Abbas","doi":"10.1109/TCNS.2024.3457582","DOIUrl":null,"url":null,"abstract":"In this article, the author studies resilient strong structural controllability (SSC) in networks with misbehaving agents and edges. The author considers various misbehavior models and identifies the set of input agents offering resilience against such disruptions. The author's approach leverages a graph-based characterization of SSC, utilizing the concept of zero forcing in graphs. Specifically, the author examines three misbehavior models that disrupt the zero forcing process and compromise network SSC. The author then characterizes a leader set that guarantees SSC despite misbehaving nodes and edges, utilizing the concept of leaky forcing—a variation of zero forcing in graphs. The author's main finding reveals that resilience against one misbehavior model inherently provides resilience against others, thus simplifying the design process. Furthermore, the author explores combining multiple networks by augmenting edges between their nodes to achieve SSC in the combined network using a reduced leader set compared to the leader sets of individual networks. The author analyzes the tradeoff between added edges and leader set size in the resulting combined graph. Finally, the author discusses computational aspects and provides numerical evaluations to demonstrate the effectiveness of the author's approach.","PeriodicalId":56023,"journal":{"name":"IEEE Transactions on Control of Network Systems","volume":"12 1","pages":"190-201"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leaky Forcing in Graphs for Resilient Controllability in Networks\",\"authors\":\"Waseem Abbas\",\"doi\":\"10.1109/TCNS.2024.3457582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the author studies resilient strong structural controllability (SSC) in networks with misbehaving agents and edges. The author considers various misbehavior models and identifies the set of input agents offering resilience against such disruptions. The author's approach leverages a graph-based characterization of SSC, utilizing the concept of zero forcing in graphs. Specifically, the author examines three misbehavior models that disrupt the zero forcing process and compromise network SSC. The author then characterizes a leader set that guarantees SSC despite misbehaving nodes and edges, utilizing the concept of leaky forcing—a variation of zero forcing in graphs. The author's main finding reveals that resilience against one misbehavior model inherently provides resilience against others, thus simplifying the design process. Furthermore, the author explores combining multiple networks by augmenting edges between their nodes to achieve SSC in the combined network using a reduced leader set compared to the leader sets of individual networks. The author analyzes the tradeoff between added edges and leader set size in the resulting combined graph. Finally, the author discusses computational aspects and provides numerical evaluations to demonstrate the effectiveness of the author's approach.\",\"PeriodicalId\":56023,\"journal\":{\"name\":\"IEEE Transactions on Control of Network Systems\",\"volume\":\"12 1\",\"pages\":\"190-201\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Control of Network Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10670573/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control of Network Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10670573/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Leaky Forcing in Graphs for Resilient Controllability in Networks
In this article, the author studies resilient strong structural controllability (SSC) in networks with misbehaving agents and edges. The author considers various misbehavior models and identifies the set of input agents offering resilience against such disruptions. The author's approach leverages a graph-based characterization of SSC, utilizing the concept of zero forcing in graphs. Specifically, the author examines three misbehavior models that disrupt the zero forcing process and compromise network SSC. The author then characterizes a leader set that guarantees SSC despite misbehaving nodes and edges, utilizing the concept of leaky forcing—a variation of zero forcing in graphs. The author's main finding reveals that resilience against one misbehavior model inherently provides resilience against others, thus simplifying the design process. Furthermore, the author explores combining multiple networks by augmenting edges between their nodes to achieve SSC in the combined network using a reduced leader set compared to the leader sets of individual networks. The author analyzes the tradeoff between added edges and leader set size in the resulting combined graph. Finally, the author discusses computational aspects and provides numerical evaluations to demonstrate the effectiveness of the author's approach.
期刊介绍:
The IEEE Transactions on Control of Network Systems is committed to the timely publication of high-impact papers at the intersection of control systems and network science. In particular, the journal addresses research on the analysis, design and implementation of networked control systems, as well as control over networks. Relevant work includes the full spectrum from basic research on control systems to the design of engineering solutions for automatic control of, and over, networks. The topics covered by this journal include: Coordinated control and estimation over networks, Control and computation over sensor networks, Control under communication constraints, Control and performance analysis issues that arise in the dynamics of networks used in application areas such as communications, computers, transportation, manufacturing, Web ranking and aggregation, social networks, biology, power systems, economics, Synchronization of activities across a controlled network, Stability analysis of controlled networks, Analysis of networks as hybrid dynamical systems.