带有张量网络映射模型和分布式电路解析的量子列车

Chen-Yu Liu, Chu-Hsuan Abraham Lin, Kuan-Cheng Chen
{"title":"带有张量网络映射模型和分布式电路解析的量子列车","authors":"Chen-Yu Liu, Chu-Hsuan Abraham Lin, Kuan-Cheng Chen","doi":"arxiv-2409.06992","DOIUrl":null,"url":null,"abstract":"In the Quantum-Train (QT) framework, mapping quantum state measurements to\nclassical neural network weights is a critical challenge that affects the\nscalability and efficiency of hybrid quantum-classical models. The traditional\nQT framework employs a multi-layer perceptron (MLP) for this task, but it\nstruggles with scalability and interpretability. To address these issues, we\npropose replacing the MLP with a tensor network-based model and introducing a\ndistributed circuit ansatz designed for large-scale quantum machine learning\nwith multiple small quantum processing unit nodes. This approach enhances\nscalability, efficiently represents high-dimensional data, and maintains a\ncompact model structure. Our enhanced QT framework retains the benefits of\nreduced parameter count and independence from quantum resources during\ninference. Experimental results on benchmark datasets demonstrate that the\ntensor network-based QT framework achieves competitive performance with\nimproved efficiency and generalization, offering a practical solution for\nscalable hybrid quantum-classical machine learning.","PeriodicalId":501226,"journal":{"name":"arXiv - PHYS - Quantum Physics","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum-Train with Tensor Network Mapping Model and Distributed Circuit Ansatz\",\"authors\":\"Chen-Yu Liu, Chu-Hsuan Abraham Lin, Kuan-Cheng Chen\",\"doi\":\"arxiv-2409.06992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the Quantum-Train (QT) framework, mapping quantum state measurements to\\nclassical neural network weights is a critical challenge that affects the\\nscalability and efficiency of hybrid quantum-classical models. The traditional\\nQT framework employs a multi-layer perceptron (MLP) for this task, but it\\nstruggles with scalability and interpretability. To address these issues, we\\npropose replacing the MLP with a tensor network-based model and introducing a\\ndistributed circuit ansatz designed for large-scale quantum machine learning\\nwith multiple small quantum processing unit nodes. This approach enhances\\nscalability, efficiently represents high-dimensional data, and maintains a\\ncompact model structure. Our enhanced QT framework retains the benefits of\\nreduced parameter count and independence from quantum resources during\\ninference. Experimental results on benchmark datasets demonstrate that the\\ntensor network-based QT framework achieves competitive performance with\\nimproved efficiency and generalization, offering a practical solution for\\nscalable hybrid quantum-classical machine learning.\",\"PeriodicalId\":501226,\"journal\":{\"name\":\"arXiv - PHYS - Quantum Physics\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Quantum Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06992\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在量子-训练(QT)框架中,将量子态测量映射到经典神经网络权重是一个关键挑战,会影响量子-经典混合模型的可扩展性和效率。传统的 QT 框架采用多层感知器(MLP)来完成这项任务,但它在可扩展性和可解释性方面存在困难。为了解决这些问题,我们建议用基于张量网络的模型取代 MLP,并引入分布式电路解析,该方法专为具有多个小型量子处理单元节点的大规模量子机器学习而设计。这种方法增强了可扩展性,有效地表示了高维数据,并保持了紧凑的模型结构。我们的增强型 QT 框架在推理过程中保留了减少参数数量和独立于量子资源的优势。在基准数据集上的实验结果表明,基于张量网络的 QT 框架实现了具有竞争力的性能,并提高了效率和泛化能力,为可扩展的混合量子-经典机器学习提供了实用的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum-Train with Tensor Network Mapping Model and Distributed Circuit Ansatz
In the Quantum-Train (QT) framework, mapping quantum state measurements to classical neural network weights is a critical challenge that affects the scalability and efficiency of hybrid quantum-classical models. The traditional QT framework employs a multi-layer perceptron (MLP) for this task, but it struggles with scalability and interpretability. To address these issues, we propose replacing the MLP with a tensor network-based model and introducing a distributed circuit ansatz designed for large-scale quantum machine learning with multiple small quantum processing unit nodes. This approach enhances scalability, efficiently represents high-dimensional data, and maintains a compact model structure. Our enhanced QT framework retains the benefits of reduced parameter count and independence from quantum resources during inference. Experimental results on benchmark datasets demonstrate that the tensor network-based QT framework achieves competitive performance with improved efficiency and generalization, offering a practical solution for scalable hybrid quantum-classical machine learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信