Y. -T. Cheng, K. -M. Hsieh, B. -Y. Wu, Z. Q. Niu, F. Aziz, Y. -H. Huang, P. Y. Wen, K. -T. Lin, Y. -H. Lin, J. C. Chen, A. F. Kockum, G. -D. Lin, Z. -R. Lin, Y. Lu, I. -C. Hoi
{"title":"由单个人造原子的退相干控制的群延迟","authors":"Y. -T. Cheng, K. -M. Hsieh, B. -Y. Wu, Z. Q. Niu, F. Aziz, Y. -H. Huang, P. Y. Wen, K. -T. Lin, Y. -H. Lin, J. C. Chen, A. F. Kockum, G. -D. Lin, Z. -R. Lin, Y. Lu, I. -C. Hoi","doi":"arxiv-2409.07731","DOIUrl":null,"url":null,"abstract":"The ability to slow down light at the single-photon level has applications in\nquantum information processing and other quantum technologies. We demonstrate\ntwo methods, both using just a single artificial atom, enabling dynamic control\nover microwave light velocities in waveguide quantum electrodynamics (waveguide\nQED). Our methods are based on two distinct mechanisms harnessing the balance\nbetween radiative and non-radiative decay rates of a superconducting artificial\natom in front of a mirror. In the first method, we tune the radiative decay of\nthe atom using interference effects due to the mirror; in the second method, we\npump the atom to control its non-radiative decay through the Autler--Townes\neffect. When the half the radiative decay rate exceeds the non-radiative decay\nrate, we observe positive group delay; conversely, dominance of the\nnon-radiative decay rate results in negative group delay. Our results advance\nsignal-processing capabilities in waveguide QED.","PeriodicalId":501226,"journal":{"name":"arXiv - PHYS - Quantum Physics","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Group delay controlled by the decoherence of a single artificial atom\",\"authors\":\"Y. -T. Cheng, K. -M. Hsieh, B. -Y. Wu, Z. Q. Niu, F. Aziz, Y. -H. Huang, P. Y. Wen, K. -T. Lin, Y. -H. Lin, J. C. Chen, A. F. Kockum, G. -D. Lin, Z. -R. Lin, Y. Lu, I. -C. Hoi\",\"doi\":\"arxiv-2409.07731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability to slow down light at the single-photon level has applications in\\nquantum information processing and other quantum technologies. We demonstrate\\ntwo methods, both using just a single artificial atom, enabling dynamic control\\nover microwave light velocities in waveguide quantum electrodynamics (waveguide\\nQED). Our methods are based on two distinct mechanisms harnessing the balance\\nbetween radiative and non-radiative decay rates of a superconducting artificial\\natom in front of a mirror. In the first method, we tune the radiative decay of\\nthe atom using interference effects due to the mirror; in the second method, we\\npump the atom to control its non-radiative decay through the Autler--Townes\\neffect. When the half the radiative decay rate exceeds the non-radiative decay\\nrate, we observe positive group delay; conversely, dominance of the\\nnon-radiative decay rate results in negative group delay. Our results advance\\nsignal-processing capabilities in waveguide QED.\",\"PeriodicalId\":501226,\"journal\":{\"name\":\"arXiv - PHYS - Quantum Physics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Quantum Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在单光子层面减缓光速的能力可应用于量子信息处理和其他量子技术。我们展示了波导量子电动力学(waveguideQED)中动态控制微波光速的两种方法,这两种方法都只使用了一个人造原子。我们的方法基于两种不同的机制,利用镜面前超导人工原子的辐射衰变率和非辐射衰变率之间的平衡。在第一种方法中,我们利用镜子产生的干涉效应来调节原子的辐射衰变;在第二种方法中,我们通过Autler--Townese效应来控制原子的非辐射衰变。当辐射衰变率超过非辐射衰变率的一半时,我们观察到正的群延迟;反之,非辐射衰变率占主导地位会导致负的群延迟。我们的研究结果推进了波导 QED 的信号处理能力。
Group delay controlled by the decoherence of a single artificial atom
The ability to slow down light at the single-photon level has applications in
quantum information processing and other quantum technologies. We demonstrate
two methods, both using just a single artificial atom, enabling dynamic control
over microwave light velocities in waveguide quantum electrodynamics (waveguide
QED). Our methods are based on two distinct mechanisms harnessing the balance
between radiative and non-radiative decay rates of a superconducting artificial
atom in front of a mirror. In the first method, we tune the radiative decay of
the atom using interference effects due to the mirror; in the second method, we
pump the atom to control its non-radiative decay through the Autler--Townes
effect. When the half the radiative decay rate exceeds the non-radiative decay
rate, we observe positive group delay; conversely, dominance of the
non-radiative decay rate results in negative group delay. Our results advance
signal-processing capabilities in waveguide QED.