利用非数字噪声实现基于门的量子存储计算

Francesco Monzani, Emanuele Ricci, Luca Nigro, Enrico Prati
{"title":"利用非数字噪声实现基于门的量子存储计算","authors":"Francesco Monzani, Emanuele Ricci, Luca Nigro, Enrico Prati","doi":"arxiv-2409.07886","DOIUrl":null,"url":null,"abstract":"We identify a noise model that ensures the functioning of an echo state\nnetwork employing a gate-based quantum computer for reservoir computing\napplications. Energy dissipation induced by amplitude damping drastically\nimproves the short-term memory capacity and expressivity of the network, by\nsimultaneously providing fading memory and richer dynamics. There is an ideal\ndissipation rate that ensures the best operation of the echo state network\naround $\\gamma\\sim$ 0.03. Nevertheless, these beneficial effects are stable as\nthe intensity of the applied noise increases. The improvement of the learning\nis confirmed by emulating a realistic noise model applied to superconducting\nqubits, paving the way for the application of reservoir computing methods in\ncurrent non-fault-tolerant quantum computers.","PeriodicalId":501226,"journal":{"name":"arXiv - PHYS - Quantum Physics","volume":"401 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging non-unital noise for gate-based quantum reservoir computing\",\"authors\":\"Francesco Monzani, Emanuele Ricci, Luca Nigro, Enrico Prati\",\"doi\":\"arxiv-2409.07886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We identify a noise model that ensures the functioning of an echo state\\nnetwork employing a gate-based quantum computer for reservoir computing\\napplications. Energy dissipation induced by amplitude damping drastically\\nimproves the short-term memory capacity and expressivity of the network, by\\nsimultaneously providing fading memory and richer dynamics. There is an ideal\\ndissipation rate that ensures the best operation of the echo state network\\naround $\\\\gamma\\\\sim$ 0.03. Nevertheless, these beneficial effects are stable as\\nthe intensity of the applied noise increases. The improvement of the learning\\nis confirmed by emulating a realistic noise model applied to superconducting\\nqubits, paving the way for the application of reservoir computing methods in\\ncurrent non-fault-tolerant quantum computers.\",\"PeriodicalId\":501226,\"journal\":{\"name\":\"arXiv - PHYS - Quantum Physics\",\"volume\":\"401 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Quantum Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们确定了一种噪声模型,它能确保采用基于门的量子计算机的回声状态网络在储层计算应用中正常运行。振幅阻尼引起的能量耗散极大地改善了网络的短期记忆容量和表达能力,同时提供了衰减记忆和更丰富的动态。有一个理想的衰减率可以确保回声态网络在 0.03 美元左右达到最佳运行状态。尽管如此,当应用噪声的强度增加时,这些有益的效果是稳定的。通过模拟应用于超导量子比特的现实噪声模型,证实了学习能力的提高,为当前非容错量子计算机中储计算方法的应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging non-unital noise for gate-based quantum reservoir computing
We identify a noise model that ensures the functioning of an echo state network employing a gate-based quantum computer for reservoir computing applications. Energy dissipation induced by amplitude damping drastically improves the short-term memory capacity and expressivity of the network, by simultaneously providing fading memory and richer dynamics. There is an ideal dissipation rate that ensures the best operation of the echo state network around $\gamma\sim$ 0.03. Nevertheless, these beneficial effects are stable as the intensity of the applied noise increases. The improvement of the learning is confirmed by emulating a realistic noise model applied to superconducting qubits, paving the way for the application of reservoir computing methods in current non-fault-tolerant quantum computers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信