Raffaele R. Severino, Michele Spasaro, Domenico Zito
{"title":"采用 22 纳米 FDSOI CMOS 的硅自旋质子控制和读出电路","authors":"Raffaele R. Severino, Michele Spasaro, Domenico Zito","doi":"arxiv-2409.08182","DOIUrl":null,"url":null,"abstract":"This paper investigates the implementation of microwave and mm-wave\nintegrated circuits for control and readout of electron/hole spin qubits, as\nelementary building blocks for future emerging quantum computing technologies.\nIn particular, it summarizes the most relevant readout and control techniques\nof electron/hole spin qubits, addresses the feasibility and reports some\npreliminary simulation results of two blocks: transimpedance amplifier (TIA)\nand pulse generator (PG). The TIA exhibits a transimpedance gain of 108.5 dB\nOhm over a -3dB bandwidth of 18 GHz, with input-referred noise current spectral\ndensity of 0.89 pA/root(Hz) at 10 GHz. The PG provides a mm-wave sinusoidal\npulse with a minimum duration time of 20 ps.","PeriodicalId":501226,"journal":{"name":"arXiv - PHYS - Quantum Physics","volume":"105 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silicon Spin Qubit Control and Readout Circuits in 22nm FDSOI CMOS\",\"authors\":\"Raffaele R. Severino, Michele Spasaro, Domenico Zito\",\"doi\":\"arxiv-2409.08182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the implementation of microwave and mm-wave\\nintegrated circuits for control and readout of electron/hole spin qubits, as\\nelementary building blocks for future emerging quantum computing technologies.\\nIn particular, it summarizes the most relevant readout and control techniques\\nof electron/hole spin qubits, addresses the feasibility and reports some\\npreliminary simulation results of two blocks: transimpedance amplifier (TIA)\\nand pulse generator (PG). The TIA exhibits a transimpedance gain of 108.5 dB\\nOhm over a -3dB bandwidth of 18 GHz, with input-referred noise current spectral\\ndensity of 0.89 pA/root(Hz) at 10 GHz. The PG provides a mm-wave sinusoidal\\npulse with a minimum duration time of 20 ps.\",\"PeriodicalId\":501226,\"journal\":{\"name\":\"arXiv - PHYS - Quantum Physics\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Quantum Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Silicon Spin Qubit Control and Readout Circuits in 22nm FDSOI CMOS
This paper investigates the implementation of microwave and mm-wave
integrated circuits for control and readout of electron/hole spin qubits, as
elementary building blocks for future emerging quantum computing technologies.
In particular, it summarizes the most relevant readout and control techniques
of electron/hole spin qubits, addresses the feasibility and reports some
preliminary simulation results of two blocks: transimpedance amplifier (TIA)
and pulse generator (PG). The TIA exhibits a transimpedance gain of 108.5 dB
Ohm over a -3dB bandwidth of 18 GHz, with input-referred noise current spectral
density of 0.89 pA/root(Hz) at 10 GHz. The PG provides a mm-wave sinusoidal
pulse with a minimum duration time of 20 ps.