二自由度机械系统的横向拓扑结构

Naiara V. de Paulo, Seongchan Kim, Pedro A. S. Salomão, Alexsandro Schneider
{"title":"二自由度机械系统的横向拓扑结构","authors":"Naiara V. de Paulo, Seongchan Kim, Pedro A. S. Salomão, Alexsandro Schneider","doi":"arxiv-2409.00445","DOIUrl":null,"url":null,"abstract":"We investigate the dynamics of a two-degree-of-freedom mechanical system for\nenergies slightly above a critical value. The critical set of the potential\nfunction is assumed to contain a finite number of saddle points. As the energy\nincreases across the critical value, a disk-like component of the Hill region\ngets connected to other components precisely at the saddles. Under certain\nconvexity assumptions on the critical set, we show the existence of a weakly\nconvex foliation in the region of the energy surface where the interesting\ndynamics takes place. The binding of the foliation is formed by the index-$2$\nLyapunov orbits in the neck region about the rest points and a particular\nindex-$3$ orbit. Among other dynamical implications, the transverse foliation\nforces the existence of periodic orbits, homoclinics, and heteroclinics to the\nLyapunov orbits. We apply the results to the H\\'enon-Heiles potential for\nenergies slightly above $1/6$. We also discuss the existence of transverse\nfoliations for decoupled mechanical systems, including the frozen Hill's lunar\nproblem with centrifugal force, the Stark problem, the Euler problem of two\ncenters, and the potential of a chemical reaction.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transverse foliations for two-degree-of-freedom mechanical systems\",\"authors\":\"Naiara V. de Paulo, Seongchan Kim, Pedro A. S. Salomão, Alexsandro Schneider\",\"doi\":\"arxiv-2409.00445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the dynamics of a two-degree-of-freedom mechanical system for\\nenergies slightly above a critical value. The critical set of the potential\\nfunction is assumed to contain a finite number of saddle points. As the energy\\nincreases across the critical value, a disk-like component of the Hill region\\ngets connected to other components precisely at the saddles. Under certain\\nconvexity assumptions on the critical set, we show the existence of a weakly\\nconvex foliation in the region of the energy surface where the interesting\\ndynamics takes place. The binding of the foliation is formed by the index-$2$\\nLyapunov orbits in the neck region about the rest points and a particular\\nindex-$3$ orbit. Among other dynamical implications, the transverse foliation\\nforces the existence of periodic orbits, homoclinics, and heteroclinics to the\\nLyapunov orbits. We apply the results to the H\\\\'enon-Heiles potential for\\nenergies slightly above $1/6$. We also discuss the existence of transverse\\nfoliations for decoupled mechanical systems, including the frozen Hill's lunar\\nproblem with centrifugal force, the Stark problem, the Euler problem of two\\ncenters, and the potential of a chemical reaction.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了略高于临界值的二自由度机械系统的动力学。假设势函数的临界集包含有限数量的鞍点。当能量越过临界值时,希尔区域的圆盘状分量恰好在鞍点处与其他分量相连。在临界集的某些凸性假设下,我们证明了在发生有趣动力学的能量面区域存在弱凸对折。褶皱的结合是由颈部区域关于静止点的 index-$2$Lyapunov 轨道和一个特定的 index-$3$ 轨道形成的。除其他动力学意义外,横向褶皱迫使周期轨道、同轴和异轴与拉普诺夫轨道同时存在。我们将这些结果应用于略高于1/6$的H\'enon-Heiles势能。我们还讨论了解耦机械系统横向叶的存在,包括具有离心力的冰冻希尔月球问题、斯塔克问题、双中心欧拉问题和化学反应势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transverse foliations for two-degree-of-freedom mechanical systems
We investigate the dynamics of a two-degree-of-freedom mechanical system for energies slightly above a critical value. The critical set of the potential function is assumed to contain a finite number of saddle points. As the energy increases across the critical value, a disk-like component of the Hill region gets connected to other components precisely at the saddles. Under certain convexity assumptions on the critical set, we show the existence of a weakly convex foliation in the region of the energy surface where the interesting dynamics takes place. The binding of the foliation is formed by the index-$2$ Lyapunov orbits in the neck region about the rest points and a particular index-$3$ orbit. Among other dynamical implications, the transverse foliation forces the existence of periodic orbits, homoclinics, and heteroclinics to the Lyapunov orbits. We apply the results to the H\'enon-Heiles potential for energies slightly above $1/6$. We also discuss the existence of transverse foliations for decoupled mechanical systems, including the frozen Hill's lunar problem with centrifugal force, the Stark problem, the Euler problem of two centers, and the potential of a chemical reaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信