Legendrian 结性的不稳定性,以及结的非规则拉格朗日协程

Georgios Dimitroglou Rizell, Roman Golovko
{"title":"Legendrian 结性的不稳定性,以及结的非规则拉格朗日协程","authors":"Georgios Dimitroglou Rizell, Roman Golovko","doi":"arxiv-2409.00290","DOIUrl":null,"url":null,"abstract":"We show that the family of smoothly non-isotopic Legendrian pretzel knots\nfrom the work of Cornwell-Ng-Sivek that all have the same Legendrian invariants\nas the standard unknot have front-spuns that are Legendrian isotopic to the\nfront-spun of the unknot. Besides that, we construct the first examples of\nLagrangian concordances between Legendrian knots that are not regular, and\nhence not decomposable. Finally, we show that the relation of Lagrangian\nconcordance between Legendrian knots is not anti-symmetric, and hence does not\ndefine a partial order. The latter two results are based upon a new type of\nflexibility for Lagrangian concordances with stabilised Legendrian ends.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Instability of Legendrian knottedness, and non-regular Lagrangian concordances of knots\",\"authors\":\"Georgios Dimitroglou Rizell, Roman Golovko\",\"doi\":\"arxiv-2409.00290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the family of smoothly non-isotopic Legendrian pretzel knots\\nfrom the work of Cornwell-Ng-Sivek that all have the same Legendrian invariants\\nas the standard unknot have front-spuns that are Legendrian isotopic to the\\nfront-spun of the unknot. Besides that, we construct the first examples of\\nLagrangian concordances between Legendrian knots that are not regular, and\\nhence not decomposable. Finally, we show that the relation of Lagrangian\\nconcordance between Legendrian knots is not anti-symmetric, and hence does not\\ndefine a partial order. The latter two results are based upon a new type of\\nflexibility for Lagrangian concordances with stabilised Legendrian ends.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,科威尔-吴-西韦克(Cornwell-Ng-Sivek)工作中的平滑非同位角传奇椒盐结家族与标准解结具有相同的传奇不变式,它们的前旋与解结的前旋具有传奇同位角。此外,我们还首次构造了不规则的 Legendrian 结之间的拉格朗日协整,因此这些结是不可分解的。最后,我们证明了 Legendrian 结之间的拉格朗日协整关系不是反对称的,因此没有定义偏序。后两个结果基于具有稳定传奇结的拉格朗日协和的一种新型灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Instability of Legendrian knottedness, and non-regular Lagrangian concordances of knots
We show that the family of smoothly non-isotopic Legendrian pretzel knots from the work of Cornwell-Ng-Sivek that all have the same Legendrian invariants as the standard unknot have front-spuns that are Legendrian isotopic to the front-spun of the unknot. Besides that, we construct the first examples of Lagrangian concordances between Legendrian knots that are not regular, and hence not decomposable. Finally, we show that the relation of Lagrangian concordance between Legendrian knots is not anti-symmetric, and hence does not define a partial order. The latter two results are based upon a new type of flexibility for Lagrangian concordances with stabilised Legendrian ends.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信