交映流形量子同调等变运算概览

Nicholas Wilkins
{"title":"交映流形量子同调等变运算概览","authors":"Nicholas Wilkins","doi":"arxiv-2409.01743","DOIUrl":null,"url":null,"abstract":"In this survey paper, we will collate various different ideas and thoughts\nregarding equivariant operations on quantum cohomology (and some in more\ngeneral Floer theory) for a symplectic manifold. We will discuss a general\nnotion of equivariant quantum operations associated to finite groups, in\naddition to their properties, examples, and calculations. We will provide a\nbrief connection to Floer theoretic invariants. We then provide abridged\ndescriptions (as per the author's understanding) of work by other authors in\nthe field, along with their major results. Finally we discuss the first step to\ncompact groups, specifically $S^1$-equivariant operations. Contained within\nthis survey are also a sketch of the idea of mod-$p$ pseudocycles, and an\nin-depth appendix detailing the author's understanding of when one can define\nthese equivariant operations in an additive way.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A survey of equivariant operations on quantum cohomology for symplectic manifolds\",\"authors\":\"Nicholas Wilkins\",\"doi\":\"arxiv-2409.01743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this survey paper, we will collate various different ideas and thoughts\\nregarding equivariant operations on quantum cohomology (and some in more\\ngeneral Floer theory) for a symplectic manifold. We will discuss a general\\nnotion of equivariant quantum operations associated to finite groups, in\\naddition to their properties, examples, and calculations. We will provide a\\nbrief connection to Floer theoretic invariants. We then provide abridged\\ndescriptions (as per the author's understanding) of work by other authors in\\nthe field, along with their major results. Finally we discuss the first step to\\ncompact groups, specifically $S^1$-equivariant operations. Contained within\\nthis survey are also a sketch of the idea of mod-$p$ pseudocycles, and an\\nin-depth appendix detailing the author's understanding of when one can define\\nthese equivariant operations in an additive way.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇调查报告中,我们将整理有关交错流形的量子同调(以及更一般的浮子理论)等变运算的各种不同观点和想法。我们将讨论与有限群相关的等变量子运算的一般概念,以及它们的性质、示例和计算。我们将简要介绍与弗洛尔理论不变式的联系。然后,我们将简要介绍(根据作者的理解)该领域其他作者的工作及其主要成果。最后,我们讨论了向紧凑群迈出的第一步,特别是 $S^1$-变量运算。本研究还包含对模-$p$伪循环思想的概述,以及一个深入的附录,详细介绍了作者对何时可以用加法定义这些等价运算的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A survey of equivariant operations on quantum cohomology for symplectic manifolds
In this survey paper, we will collate various different ideas and thoughts regarding equivariant operations on quantum cohomology (and some in more general Floer theory) for a symplectic manifold. We will discuss a general notion of equivariant quantum operations associated to finite groups, in addition to their properties, examples, and calculations. We will provide a brief connection to Floer theoretic invariants. We then provide abridged descriptions (as per the author's understanding) of work by other authors in the field, along with their major results. Finally we discuss the first step to compact groups, specifically $S^1$-equivariant operations. Contained within this survey are also a sketch of the idea of mod-$p$ pseudocycles, and an in-depth appendix detailing the author's understanding of when one can define these equivariant operations in an additive way.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信