关于开普勒对谐调的几何处理方法

Urs Frauenfelder
{"title":"关于开普勒对谐调的几何处理方法","authors":"Urs Frauenfelder","doi":"arxiv-2409.04119","DOIUrl":null,"url":null,"abstract":"Kepler's thinking is highly original and the inspiration for discovering his\nfamous third law is based on his rather curious geometric approach in his\nHarmonices mundi for explaining consonances. In this article we try to use a\nmodern mathematical approach based on Kepler's ideas how to characterize the\nseven consonances with the help of the numbers of edges of polygons\nconstructible by ruler and compass.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Kepler's geometric approach to consonances\",\"authors\":\"Urs Frauenfelder\",\"doi\":\"arxiv-2409.04119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kepler's thinking is highly original and the inspiration for discovering his\\nfamous third law is based on his rather curious geometric approach in his\\nHarmonices mundi for explaining consonances. In this article we try to use a\\nmodern mathematical approach based on Kepler's ideas how to characterize the\\nseven consonances with the help of the numbers of edges of polygons\\nconstructible by ruler and compass.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

开普勒的思想极具独创性,而他发现著名的第三定律的灵感则来自于他在 Harmonices mundi 中用相当奇特的几何方法来解释谐调。在本文中,我们将根据开普勒的思想,尝试使用现代数学方法,借助尺子和圆规可以构造的多边形的边数,来描述这些谐调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Kepler's geometric approach to consonances
Kepler's thinking is highly original and the inspiration for discovering his famous third law is based on his rather curious geometric approach in his Harmonices mundi for explaining consonances. In this article we try to use a modern mathematical approach based on Kepler's ideas how to characterize the seven consonances with the help of the numbers of edges of polygons constructible by ruler and compass.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信