{"title":"关于指数型猜想","authors":"Zihong Chen","doi":"arxiv-2409.03922","DOIUrl":null,"url":null,"abstract":"We prove that the small quantum t-connection on a closed monotone symplectic\nmanifold is of exponential type and has quasi-unipotent regularized monodromies\nat t=0. This answers a conjecture of Katzarkov-Kontsevich-Pantev and\nGalkin-Golyshev-Iritani for those classes of symplectic manifolds. The proof\nfollows a reduction to positive characteristics argument, and the main tools of\nthe proof are Katz's local monodromy theorem in differential equations and\nquantum Steenrod operations in equivariant Gromov-Witten theory with mod p\ncoefficients.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the exponential type conjecture\",\"authors\":\"Zihong Chen\",\"doi\":\"arxiv-2409.03922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the small quantum t-connection on a closed monotone symplectic\\nmanifold is of exponential type and has quasi-unipotent regularized monodromies\\nat t=0. This answers a conjecture of Katzarkov-Kontsevich-Pantev and\\nGalkin-Golyshev-Iritani for those classes of symplectic manifolds. The proof\\nfollows a reduction to positive characteristics argument, and the main tools of\\nthe proof are Katz's local monodromy theorem in differential equations and\\nquantum Steenrod operations in equivariant Gromov-Witten theory with mod p\\ncoefficients.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们证明了封闭单调交映流形上的小量子 t 连接是指数型的,并且在 t=0 时具有准单能正则化单色性。这回答了卡特扎尔科夫-康采维奇-潘捷夫和加尔金-戈利雪夫-伊里塔尼对这些类交映流形的猜想。证明的主要工具是微分方程中的卡茨局部单色性定理和等变格罗莫夫-维滕理论中的模p系数量子斯泰恩德运算。
We prove that the small quantum t-connection on a closed monotone symplectic
manifold is of exponential type and has quasi-unipotent regularized monodromies
at t=0. This answers a conjecture of Katzarkov-Kontsevich-Pantev and
Galkin-Golyshev-Iritani for those classes of symplectic manifolds. The proof
follows a reduction to positive characteristics argument, and the main tools of
the proof are Katz's local monodromy theorem in differential equations and
quantum Steenrod operations in equivariant Gromov-Witten theory with mod p
coefficients.