莫尔斯同调与等差数列

Erkao Bao, Tyler Lawson
{"title":"莫尔斯同调与等差数列","authors":"Erkao Bao, Tyler Lawson","doi":"arxiv-2409.04694","DOIUrl":null,"url":null,"abstract":"In this paper, we develop methods for calculating equivariant homology from\nequivariant Morse functions on a closed manifold with the action of a finite\ngroup. We show how to alter $G$-equivariant Morse functions to a stable one,\nwhere the descending manifold from a critical point $p$ has the same stabilizer\ngroup as $p$, giving a better-behaved cell structure on $M$. For an\nequivariant, stable Morse function, we show that a generic equivariant metric\nsatisfies the Morse--Smale condition. In the process, we give a proof that a generic equivariant function is Morse,\nand that equivariant, stable Morse functions form a dense subset in the\n$C^0$-topology within the space of all equivariant functions. Finally, we give an expository account of equivariant homology and cohomology\ntheories, as well as their interaction with Morse theory. We show that any\nequivariant Morse function gives a filtration of $M$ that induces a Morse\nspectral sequence, computing the equivariant homology of $M$ from information\nabout how the stabilizer group of a critical point acts on its tangent space.\nIn the case of a stable Morse function, we show that this can be further\nreduced to a Morse chain complex.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morse homology and equivariance\",\"authors\":\"Erkao Bao, Tyler Lawson\",\"doi\":\"arxiv-2409.04694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop methods for calculating equivariant homology from\\nequivariant Morse functions on a closed manifold with the action of a finite\\ngroup. We show how to alter $G$-equivariant Morse functions to a stable one,\\nwhere the descending manifold from a critical point $p$ has the same stabilizer\\ngroup as $p$, giving a better-behaved cell structure on $M$. For an\\nequivariant, stable Morse function, we show that a generic equivariant metric\\nsatisfies the Morse--Smale condition. In the process, we give a proof that a generic equivariant function is Morse,\\nand that equivariant, stable Morse functions form a dense subset in the\\n$C^0$-topology within the space of all equivariant functions. Finally, we give an expository account of equivariant homology and cohomology\\ntheories, as well as their interaction with Morse theory. We show that any\\nequivariant Morse function gives a filtration of $M$ that induces a Morse\\nspectral sequence, computing the equivariant homology of $M$ from information\\nabout how the stabilizer group of a critical point acts on its tangent space.\\nIn the case of a stable Morse function, we show that this can be further\\nreduced to a Morse chain complex.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们开发了从有限群作用的封闭流形上的等变莫尔斯函数计算等变同调的方法。我们展示了如何将 $G$ 等变莫尔斯函数改变为稳定的等变莫尔斯函数,其中从临界点 $p$ 下降的流形具有与 $p$ 相同的稳定群,从而在 $M$ 上得到更好的单元结构。对于一个等变的稳定莫尔斯函数,我们证明了一般等变度量满足莫尔斯--斯马尔条件。在此过程中,我们证明了一般等变函数是莫尔斯函数,并且等变的、稳定的莫尔斯函数在$C^0$拓扑中构成了所有等变函数空间的密集子集。最后,我们阐述了等变同调理论和同调理论,以及它们与莫尔斯理论的相互作用。我们证明,任何等变莫尔斯函数都会给出一个诱导莫尔斯谱序列的 $M$ 滤波,根据临界点稳定器群如何作用于其切线空间的信息计算 $M$ 的等变同调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Morse homology and equivariance
In this paper, we develop methods for calculating equivariant homology from equivariant Morse functions on a closed manifold with the action of a finite group. We show how to alter $G$-equivariant Morse functions to a stable one, where the descending manifold from a critical point $p$ has the same stabilizer group as $p$, giving a better-behaved cell structure on $M$. For an equivariant, stable Morse function, we show that a generic equivariant metric satisfies the Morse--Smale condition. In the process, we give a proof that a generic equivariant function is Morse, and that equivariant, stable Morse functions form a dense subset in the $C^0$-topology within the space of all equivariant functions. Finally, we give an expository account of equivariant homology and cohomology theories, as well as their interaction with Morse theory. We show that any equivariant Morse function gives a filtration of $M$ that induces a Morse spectral sequence, computing the equivariant homology of $M$ from information about how the stabilizer group of a critical point acts on its tangent space. In the case of a stable Morse function, we show that this can be further reduced to a Morse chain complex.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信