准对称西格尔域上某些零potent Lie 群的无多重性表示和各向同性作用

Koichi Arashi
{"title":"准对称西格尔域上某些零potent Lie 群的无多重性表示和各向同性作用","authors":"Koichi Arashi","doi":"arxiv-2409.05507","DOIUrl":null,"url":null,"abstract":"We study multiplicity-free representations of nilpotent Lie groups over a\nquasi-symmetric Siegel domain, with a focus on certain two-step nilpotent Lie\ngroups. We provide necessary and sufficient conditions for the\nmultiplicity-freeness property. Specifically, we establish the equivalence\nbetween the disjointness of irreducible unitary representations realized over\nthe domain, the multiplicity-freeness of the unitary representation on the\nspace of $L^2$ holomorphic functions, and the coisotropicity of the group\naction.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicity-free representations and coisotropic actions of certain nilpotent Lie groups over quasi-symmetric Siegel domains\",\"authors\":\"Koichi Arashi\",\"doi\":\"arxiv-2409.05507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study multiplicity-free representations of nilpotent Lie groups over a\\nquasi-symmetric Siegel domain, with a focus on certain two-step nilpotent Lie\\ngroups. We provide necessary and sufficient conditions for the\\nmultiplicity-freeness property. Specifically, we establish the equivalence\\nbetween the disjointness of irreducible unitary representations realized over\\nthe domain, the multiplicity-freeness of the unitary representation on the\\nspace of $L^2$ holomorphic functions, and the coisotropicity of the group\\naction.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了水对称西格尔域上零势列群的无多重性表示,重点是某些两步零势列群。我们提供了无多重性性质的必要条件和充分条件。具体地说,我们建立了在该域上实现的不可还原单元表示的不相交性、单元表示在 $L^2$ 全形函数空间上的无多重性和群action 的共向性之间的等价性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiplicity-free representations and coisotropic actions of certain nilpotent Lie groups over quasi-symmetric Siegel domains
We study multiplicity-free representations of nilpotent Lie groups over a quasi-symmetric Siegel domain, with a focus on certain two-step nilpotent Lie groups. We provide necessary and sufficient conditions for the multiplicity-freeness property. Specifically, we establish the equivalence between the disjointness of irreducible unitary representations realized over the domain, the multiplicity-freeness of the unitary representation on the space of $L^2$ holomorphic functions, and the coisotropicity of the group action.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信