{"title":"利用环面扩展契卡诺夫-埃利亚什伯格代数","authors":"Milica Dukic","doi":"arxiv-2409.05856","DOIUrl":null,"url":null,"abstract":"We define an SFT-type invariant for Legendrian knots in the standard contact\n$\\mathbb{R}^3$. The invariant is a deformation of the Chekanov-Eliashberg\ndifferential graded algebra. The differential consists of a part that counts\nindex zero $J$-holomorphic disks with up to two positive punctures, annuli with\none positive puncture, and a string topological part. We describe the invariant\nand demonstrate its invariance combinatorially from the Lagrangian knot\nprojection, and compute some simple examples where the deformation is\nnon-vanishing.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":"401 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extension of Chekanov-Eliashberg algebra using annuli\",\"authors\":\"Milica Dukic\",\"doi\":\"arxiv-2409.05856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define an SFT-type invariant for Legendrian knots in the standard contact\\n$\\\\mathbb{R}^3$. The invariant is a deformation of the Chekanov-Eliashberg\\ndifferential graded algebra. The differential consists of a part that counts\\nindex zero $J$-holomorphic disks with up to two positive punctures, annuli with\\none positive puncture, and a string topological part. We describe the invariant\\nand demonstrate its invariance combinatorially from the Lagrangian knot\\nprojection, and compute some simple examples where the deformation is\\nnon-vanishing.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":\"401 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extension of Chekanov-Eliashberg algebra using annuli
We define an SFT-type invariant for Legendrian knots in the standard contact
$\mathbb{R}^3$. The invariant is a deformation of the Chekanov-Eliashberg
differential graded algebra. The differential consists of a part that counts
index zero $J$-holomorphic disks with up to two positive punctures, annuli with
one positive puncture, and a string topological part. We describe the invariant
and demonstrate its invariance combinatorially from the Lagrangian knot
projection, and compute some simple examples where the deformation is
non-vanishing.