{"title":"积极的微观局部整体性具有全球规律性","authors":"Roger Casals, Wenyuan Li","doi":"arxiv-2409.07435","DOIUrl":null,"url":null,"abstract":"We establish a geometric criterion for local microlocal holonomies to be\nglobally regular on the moduli space of Lagrangian fillings. This\nlocal-to-global regularity result holds for arbitrary Legendrian links and it\nis a key input for the study of cluster structures on such moduli spaces.\nSpecifically, we construct regular functions on derived moduli stacks of\nsheaves with Legendrian microsupport by studying the Hochschild homology of the\nassociated dg-categories via relative Lagrangian skeleta. In this construction,\na key geometric result is that local microlocal merodromies along positive\nrelative cycles in Lagrangian fillings yield global Hochschild 0-cycles for\nthese dg-categories.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive microlocal holonomies are globally regular\",\"authors\":\"Roger Casals, Wenyuan Li\",\"doi\":\"arxiv-2409.07435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish a geometric criterion for local microlocal holonomies to be\\nglobally regular on the moduli space of Lagrangian fillings. This\\nlocal-to-global regularity result holds for arbitrary Legendrian links and it\\nis a key input for the study of cluster structures on such moduli spaces.\\nSpecifically, we construct regular functions on derived moduli stacks of\\nsheaves with Legendrian microsupport by studying the Hochschild homology of the\\nassociated dg-categories via relative Lagrangian skeleta. In this construction,\\na key geometric result is that local microlocal merodromies along positive\\nrelative cycles in Lagrangian fillings yield global Hochschild 0-cycles for\\nthese dg-categories.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Positive microlocal holonomies are globally regular
We establish a geometric criterion for local microlocal holonomies to be
globally regular on the moduli space of Lagrangian fillings. This
local-to-global regularity result holds for arbitrary Legendrian links and it
is a key input for the study of cluster structures on such moduli spaces.
Specifically, we construct regular functions on derived moduli stacks of
sheaves with Legendrian microsupport by studying the Hochschild homology of the
associated dg-categories via relative Lagrangian skeleta. In this construction,
a key geometric result is that local microlocal merodromies along positive
relative cycles in Lagrangian fillings yield global Hochschild 0-cycles for
these dg-categories.