{"title":"环镜单反和拉格朗日球","authors":"Vivek Shende","doi":"arxiv-2409.08261","DOIUrl":null,"url":null,"abstract":"The central fiber of a Gross-Siebert type toric degeneration is known to\nsatisfy homological mirror symmetry: its category of coherent sheaves is\nequivalent to the wrapped Fukaya category of a certain exact symplectic\nmanifold. Here we show that, in the Calabi-Yau case, the images of line bundles\nare represented by Lagrangian spheres.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toric mirror monodromies and Lagrangian spheres\",\"authors\":\"Vivek Shende\",\"doi\":\"arxiv-2409.08261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The central fiber of a Gross-Siebert type toric degeneration is known to\\nsatisfy homological mirror symmetry: its category of coherent sheaves is\\nequivalent to the wrapped Fukaya category of a certain exact symplectic\\nmanifold. Here we show that, in the Calabi-Yau case, the images of line bundles\\nare represented by Lagrangian spheres.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The central fiber of a Gross-Siebert type toric degeneration is known to
satisfy homological mirror symmetry: its category of coherent sheaves is
equivalent to the wrapped Fukaya category of a certain exact symplectic
manifold. Here we show that, in the Calabi-Yau case, the images of line bundles
are represented by Lagrangian spheres.