环镜单反和拉格朗日球

Vivek Shende
{"title":"环镜单反和拉格朗日球","authors":"Vivek Shende","doi":"arxiv-2409.08261","DOIUrl":null,"url":null,"abstract":"The central fiber of a Gross-Siebert type toric degeneration is known to\nsatisfy homological mirror symmetry: its category of coherent sheaves is\nequivalent to the wrapped Fukaya category of a certain exact symplectic\nmanifold. Here we show that, in the Calabi-Yau case, the images of line bundles\nare represented by Lagrangian spheres.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toric mirror monodromies and Lagrangian spheres\",\"authors\":\"Vivek Shende\",\"doi\":\"arxiv-2409.08261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The central fiber of a Gross-Siebert type toric degeneration is known to\\nsatisfy homological mirror symmetry: its category of coherent sheaves is\\nequivalent to the wrapped Fukaya category of a certain exact symplectic\\nmanifold. Here we show that, in the Calabi-Yau case, the images of line bundles\\nare represented by Lagrangian spheres.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,格罗斯-西伯特型环变性的中心纤维满足同调镜像对称性:它的相干剪切范畴等价于某个精确交折射曼弗雷德的包裹 Fukaya 范畴。我们在此证明,在 Calabi-Yau 的情况下,线束的图像由拉格朗日球表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toric mirror monodromies and Lagrangian spheres
The central fiber of a Gross-Siebert type toric degeneration is known to satisfy homological mirror symmetry: its category of coherent sheaves is equivalent to the wrapped Fukaya category of a certain exact symplectic manifold. Here we show that, in the Calabi-Yau case, the images of line bundles are represented by Lagrangian spheres.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信