{"title":"G 空间之间线性规范关系的韦尔海姆-伍德沃德范畴","authors":"Alan Weinstein","doi":"arxiv-2408.06363","DOIUrl":null,"url":null,"abstract":"We extend the work in a previous paper with David Li-Bland to construct the\nWehrheim-Woodward category WW(GSLREL) of equivariant linear canonical relations\nbetween linear symplectic G-spaces for a compact group G. When G is the trivial\ngroup, this reduces to the previous result that the morphisms in WW(SLREL) may\nbe identified with pairs (L,k) consisting of a linear canonical relation and a\nnonnegative integer.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Wehrheim-Woodward category of linear canonical relations between G-spaces\",\"authors\":\"Alan Weinstein\",\"doi\":\"arxiv-2408.06363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the work in a previous paper with David Li-Bland to construct the\\nWehrheim-Woodward category WW(GSLREL) of equivariant linear canonical relations\\nbetween linear symplectic G-spaces for a compact group G. When G is the trivial\\ngroup, this reduces to the previous result that the morphisms in WW(SLREL) may\\nbe identified with pairs (L,k) consisting of a linear canonical relation and a\\nnonnegative integer.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.06363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们扩展了与大卫-李-布兰德(David Li-Bland)合作的前一篇论文中的工作,构建了紧凑群 G 的线性交点 G 空间之间的等变线性规范关系的韦尔海姆-伍德沃德类别 WW(GSLREL)。
The Wehrheim-Woodward category of linear canonical relations between G-spaces
We extend the work in a previous paper with David Li-Bland to construct the
Wehrheim-Woodward category WW(GSLREL) of equivariant linear canonical relations
between linear symplectic G-spaces for a compact group G. When G is the trivial
group, this reduces to the previous result that the morphisms in WW(SLREL) may
be identified with pairs (L,k) consisting of a linear canonical relation and a
nonnegative integer.