接触切割图和韦恩斯坦$mathcal{L}$不变量

Nickolas Castro, Gabriel Islambouli, Jie Min, Sümeyra Sakallı, Laura Starkston, Angela Wu
{"title":"接触切割图和韦恩斯坦$mathcal{L}$不变量","authors":"Nickolas Castro, Gabriel Islambouli, Jie Min, Sümeyra Sakallı, Laura Starkston, Angela Wu","doi":"arxiv-2408.05340","DOIUrl":null,"url":null,"abstract":"We define and study the contact cut graph which is an analogue of Hatcher and\nThurston's cut graph for contact geometry, inspired by contact Heegaard\nsplittings. We show how oriented paths in the contact cut graph correspond to\nLefschetz fibrations and multisection with divides diagrams. We also give a\ncorrespondence for achiral Lefschetz fibrations. We use these correspondences\nto define a new invariant of Weinstein domains, the Weinstein\n$\\mathcal{L}$-invariant, that is a symplectic analogue of the Kirby-Thompson's\n$\\mathcal{L}$-invariant of smooth $4$-manifolds. We discuss the relation of\nLefschetz stabilization with the Weinstein $\\mathcal{L}$-invariant. We present\ntopological and geometric constraints of Weinstein domains with\n$\\mathcal{L}=0$. We also give two families of examples of multisections with\ndivides that have arbitrarily large $\\mathcal{L}$-invariant.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The contact cut graph and a Weinstein $\\\\mathcal{L}$-invariant\",\"authors\":\"Nickolas Castro, Gabriel Islambouli, Jie Min, Sümeyra Sakallı, Laura Starkston, Angela Wu\",\"doi\":\"arxiv-2408.05340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define and study the contact cut graph which is an analogue of Hatcher and\\nThurston's cut graph for contact geometry, inspired by contact Heegaard\\nsplittings. We show how oriented paths in the contact cut graph correspond to\\nLefschetz fibrations and multisection with divides diagrams. We also give a\\ncorrespondence for achiral Lefschetz fibrations. We use these correspondences\\nto define a new invariant of Weinstein domains, the Weinstein\\n$\\\\mathcal{L}$-invariant, that is a symplectic analogue of the Kirby-Thompson's\\n$\\\\mathcal{L}$-invariant of smooth $4$-manifolds. We discuss the relation of\\nLefschetz stabilization with the Weinstein $\\\\mathcal{L}$-invariant. We present\\ntopological and geometric constraints of Weinstein domains with\\n$\\\\mathcal{L}=0$. We also give two families of examples of multisections with\\ndivides that have arbitrarily large $\\\\mathcal{L}$-invariant.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.05340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们定义并研究了接触切分图,它是哈彻和赫斯顿的接触几何切分图的类似物,灵感来自接触希格斯平面图。我们展示了接触切割图中的定向路径如何对应于莱夫谢茨纤维图和带分割图的多分割图。我们还给出了非手性拉夫谢茨纤维的对应关系。我们利用这些对应关系定义了韦恩斯坦域的一个新不变式,即韦恩斯坦$mathcal{L}$不变式,它是光滑$4$-manifolds 的柯比-汤普森$mathcal{L}$不变式的交映类似物。我们讨论了莱夫谢茨稳定化与韦恩斯坦 $\mathcal{L}$ 不变式的关系。我们提出了具有$\mathcal{L}=0$的韦恩斯坦域的拓扑和几何约束。我们还给出了两个具有任意大$\mathcal{L}$不变量的多截面撤消域系列的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The contact cut graph and a Weinstein $\mathcal{L}$-invariant
We define and study the contact cut graph which is an analogue of Hatcher and Thurston's cut graph for contact geometry, inspired by contact Heegaard splittings. We show how oriented paths in the contact cut graph correspond to Lefschetz fibrations and multisection with divides diagrams. We also give a correspondence for achiral Lefschetz fibrations. We use these correspondences to define a new invariant of Weinstein domains, the Weinstein $\mathcal{L}$-invariant, that is a symplectic analogue of the Kirby-Thompson's $\mathcal{L}$-invariant of smooth $4$-manifolds. We discuss the relation of Lefschetz stabilization with the Weinstein $\mathcal{L}$-invariant. We present topological and geometric constraints of Weinstein domains with $\mathcal{L}=0$. We also give two families of examples of multisections with divides that have arbitrarily large $\mathcal{L}$-invariant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信