论局部共形对称几何中精确拉格朗日的投影

Adrien Currier
{"title":"论局部共形对称几何中精确拉格朗日的投影","authors":"Adrien Currier","doi":"arxiv-2408.07760","DOIUrl":null,"url":null,"abstract":"In this paper, we construct examples of exact Lagrangians (of \"locally\nconformally symplectic\" type) in cotangent bundles of closed manifolds with\nlocally conformally symplectic structures and give conditions under which the\nprojection induces a simple homotopy equivalence between an exact Lagrangian\nand the $0$-section of the cotangent bundle. This line of questioning follows\nin the footsteps of Abouzaid and Kragh, and more generally of the Arnol'd\nconjecture. Notably, we will see that while exact Lagrangians cannot be spheres\nin this setting, a naive adaptation of the Abouzaid-Kragh theorem does not hold\nin this generalization.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the projection of exact Lagrangians in locally conformally symplectic geometry\",\"authors\":\"Adrien Currier\",\"doi\":\"arxiv-2408.07760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we construct examples of exact Lagrangians (of \\\"locally\\nconformally symplectic\\\" type) in cotangent bundles of closed manifolds with\\nlocally conformally symplectic structures and give conditions under which the\\nprojection induces a simple homotopy equivalence between an exact Lagrangian\\nand the $0$-section of the cotangent bundle. This line of questioning follows\\nin the footsteps of Abouzaid and Kragh, and more generally of the Arnol'd\\nconjecture. Notably, we will see that while exact Lagrangians cannot be spheres\\nin this setting, a naive adaptation of the Abouzaid-Kragh theorem does not hold\\nin this generalization.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.07760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们在具有局部共形交映结构的封闭流形的余切束中构造了精确拉格朗日("局部共形交映 "类型)的例子,并给出了在精确拉格朗日和余切束的 $0$ 截面之间投影诱导简单同调等价的条件。这个问题追随阿布扎伊德和克拉格的脚步,更广义地说,追随阿诺德猜想的脚步。值得注意的是,我们将看到,虽然精确拉格朗日在这种情况下不可能是球面的,但阿布扎伊德-克拉格定理的天真改编在这种推广中并不成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the projection of exact Lagrangians in locally conformally symplectic geometry
In this paper, we construct examples of exact Lagrangians (of "locally conformally symplectic" type) in cotangent bundles of closed manifolds with locally conformally symplectic structures and give conditions under which the projection induces a simple homotopy equivalence between an exact Lagrangian and the $0$-section of the cotangent bundle. This line of questioning follows in the footsteps of Abouzaid and Kragh, and more generally of the Arnol'd conjecture. Notably, we will see that while exact Lagrangians cannot be spheres in this setting, a naive adaptation of the Abouzaid-Kragh theorem does not hold in this generalization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信