塞弗特纤维空间的交映理性同调球填充

John B. Etnyre, Burak Ozbagci, Bülent Tosun
{"title":"塞弗特纤维空间的交映理性同调球填充","authors":"John B. Etnyre, Burak Ozbagci, Bülent Tosun","doi":"arxiv-2408.09292","DOIUrl":null,"url":null,"abstract":"We characterize when some small Seifert fibered spaces can be the convex\nboundary of a symplectic rational homology ball and give strong restrictions\nfor others to bound such manifolds. As part of this, we show that the only\nspherical $3$-manifolds that are the boundary of a symplectic rational homology\nball are the lens spaces $L(p^2,pq-1)$ found by Lisca and give evidence for the\nGompf conjecture that Brieskorn spheres do not bound Stein domains in C^2. We\nalso find restrictions on Lagrangian disk fillings of some Legendrian knots in\nsmall Seifert fibered spaces.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symplectic rational homology ball fillings of Seifert fibered spaces\",\"authors\":\"John B. Etnyre, Burak Ozbagci, Bülent Tosun\",\"doi\":\"arxiv-2408.09292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We characterize when some small Seifert fibered spaces can be the convex\\nboundary of a symplectic rational homology ball and give strong restrictions\\nfor others to bound such manifolds. As part of this, we show that the only\\nspherical $3$-manifolds that are the boundary of a symplectic rational homology\\nball are the lens spaces $L(p^2,pq-1)$ found by Lisca and give evidence for the\\nGompf conjecture that Brieskorn spheres do not bound Stein domains in C^2. We\\nalso find restrictions on Lagrangian disk fillings of some Legendrian knots in\\nsmall Seifert fibered spaces.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.09292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了一些小的塞弗特纤维空间何时可以成为交映有理同调球的凸边界,并给出了其他约束此类流形的强限制。作为其中的一部分,我们证明了作为交映理性同调球边界的唯一球面 3 美元流形是 Lisca 发现的透镜空间 $L(p^2,pq-1)$,并给出了 Gompf 猜想的证据,即布里斯科恩球不束缚 C^2 中的斯坦域。我们还发现了小塞弗特纤维空间中一些传奇结的拉格朗日圆盘填充的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symplectic rational homology ball fillings of Seifert fibered spaces
We characterize when some small Seifert fibered spaces can be the convex boundary of a symplectic rational homology ball and give strong restrictions for others to bound such manifolds. As part of this, we show that the only spherical $3$-manifolds that are the boundary of a symplectic rational homology ball are the lens spaces $L(p^2,pq-1)$ found by Lisca and give evidence for the Gompf conjecture that Brieskorn spheres do not bound Stein domains in C^2. We also find restrictions on Lagrangian disk fillings of some Legendrian knots in small Seifert fibered spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信