通过对称性实现球面上面积保全映射的霍弗增长二分法

Lev Buhovsky, Ben Feuerstein, Leonid Polterovich, Egor Shelukhin
{"title":"通过对称性实现球面上面积保全映射的霍弗增长二分法","authors":"Lev Buhovsky, Ben Feuerstein, Leonid Polterovich, Egor Shelukhin","doi":"arxiv-2408.08854","DOIUrl":null,"url":null,"abstract":"We prove that autonomous Hamiltonian flows on the two-sphere exhibit the\nfollowing dichotomy: the Hofer norm either grows linearly or is bounded in time\nby a universal constant C. Our approach involves a new technique, Hamiltonian\nsymmetrization. Essentially, we prove that every autonomous Hamiltonian\ndiffeomorphism is conjugate to an element C-close in the Hofer metric to one\ngenerated by a function of the height.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dichotomy for the Hofer growth of area preserving maps on the sphere via symmetrization\",\"authors\":\"Lev Buhovsky, Ben Feuerstein, Leonid Polterovich, Egor Shelukhin\",\"doi\":\"arxiv-2408.08854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that autonomous Hamiltonian flows on the two-sphere exhibit the\\nfollowing dichotomy: the Hofer norm either grows linearly or is bounded in time\\nby a universal constant C. Our approach involves a new technique, Hamiltonian\\nsymmetrization. Essentially, we prove that every autonomous Hamiltonian\\ndiffeomorphism is conjugate to an element C-close in the Hofer metric to one\\ngenerated by a function of the height.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.08854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.08854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了二球体上的自发哈密顿流表现出以下二分法:霍弗规范要么线性增长,要么在时间上受一个普遍常数 C 的约束。从本质上讲,我们证明了每一个自发的哈密顿非同形都与霍弗公设中的一个元素 C 共轭,该元素与高度的一个函数生成的元素 C 接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A dichotomy for the Hofer growth of area preserving maps on the sphere via symmetrization
We prove that autonomous Hamiltonian flows on the two-sphere exhibit the following dichotomy: the Hofer norm either grows linearly or is bounded in time by a universal constant C. Our approach involves a new technique, Hamiltonian symmetrization. Essentially, we prove that every autonomous Hamiltonian diffeomorphism is conjugate to an element C-close in the Hofer metric to one generated by a function of the height.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信