相对于光滑反偶函数除数的交映同调

Daniel Pomerleano, Paul Seidel
{"title":"相对于光滑反偶函数除数的交映同调","authors":"Daniel Pomerleano, Paul Seidel","doi":"arxiv-2408.09039","DOIUrl":null,"url":null,"abstract":"For a monotone symplectic manifold and a smooth anticanonical divisor, there\nis a formal deformation of the symplectic cohomology of the divisor complement,\ndefined by allowing Floer cylinders to intersect the divisor. We compute this\ndeformed symplectic cohomology, in terms of the ordinary cohomology of the\nmanifold and divisor; and also describe some additional structures that it\ncarries.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symplectic cohomology relative to a smooth anticanonical divisor\",\"authors\":\"Daniel Pomerleano, Paul Seidel\",\"doi\":\"arxiv-2408.09039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a monotone symplectic manifold and a smooth anticanonical divisor, there\\nis a formal deformation of the symplectic cohomology of the divisor complement,\\ndefined by allowing Floer cylinders to intersect the divisor. We compute this\\ndeformed symplectic cohomology, in terms of the ordinary cohomology of the\\nmanifold and divisor; and also describe some additional structures that it\\ncarries.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.09039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于一个单调交映流形和一个光滑反交映分部,分部补集的交映同调存在一种形式上的变形,其定义是允许浮子圆柱体与分部相交。我们用它们的流形和分裂子的普通同调来计算这种变形的交映同调,并描述了它所携带的一些附加结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symplectic cohomology relative to a smooth anticanonical divisor
For a monotone symplectic manifold and a smooth anticanonical divisor, there is a formal deformation of the symplectic cohomology of the divisor complement, defined by allowing Floer cylinders to intersect the divisor. We compute this deformed symplectic cohomology, in terms of the ordinary cohomology of the manifold and divisor; and also describe some additional structures that it carries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信