非阿贝尔三维镜像对称中的 SYZ 镜像

Ki Fung Chan, Naichung Conan Leung
{"title":"非阿贝尔三维镜像对称中的 SYZ 镜像","authors":"Ki Fung Chan, Naichung Conan Leung","doi":"arxiv-2408.09479","DOIUrl":null,"url":null,"abstract":"In the SYZ program, the mirror of \\(Y\\) is the moduli space of Lagrangian\nbranes in \\(Y\\). When \\(Y\\) is equipped with a Hamiltonian \\(G\\)-action, we\nprove that its mirror determines a canonical complex Lagrangian subvariety in\nthe Coulomb branch of the 3d \\(\\mathcal{N}=4\\) pure \\(G\\)-gauge theory.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SYZ Mirrors in non-Abelian 3d Mirror Symmetry\",\"authors\":\"Ki Fung Chan, Naichung Conan Leung\",\"doi\":\"arxiv-2408.09479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the SYZ program, the mirror of \\\\(Y\\\\) is the moduli space of Lagrangian\\nbranes in \\\\(Y\\\\). When \\\\(Y\\\\) is equipped with a Hamiltonian \\\\(G\\\\)-action, we\\nprove that its mirror determines a canonical complex Lagrangian subvariety in\\nthe Coulomb branch of the 3d \\\\(\\\\mathcal{N}=4\\\\) pure \\\\(G\\\\)-gauge theory.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.09479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在SYZ计划中,(Y)的镜像是(Y)中拉格朗日膜的模空间。当(Y)配有哈密顿(G)作用时,我们证明它的镜像决定了3d(\mathcal{N}=4\)纯(G)量子理论库仑分支中的一个典型复拉格朗日子变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SYZ Mirrors in non-Abelian 3d Mirror Symmetry
In the SYZ program, the mirror of \(Y\) is the moduli space of Lagrangian branes in \(Y\). When \(Y\) is equipped with a Hamiltonian \(G\)-action, we prove that its mirror determines a canonical complex Lagrangian subvariety in the Coulomb branch of the 3d \(\mathcal{N}=4\) pure \(G\)-gauge theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信