完全实数协和的拉格朗日近似法

Georgios Dimitroglou Rizell
{"title":"完全实数协和的拉格朗日近似法","authors":"Georgios Dimitroglou Rizell","doi":"arxiv-2408.16614","DOIUrl":null,"url":null,"abstract":"We show that two-dimensional totally real concordances can be approximated by\nLagrangian concordances after sufficiently many positive and negative\nstabilisations of the Legendrian boundaries. The applications of this result\nare the construction of knotted Lagrangian concordances, and knotted Lagrangian\ntori in symplectisations of overtwisted contact manifolds.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lagrangian Approximation of Totally Real Concordances\",\"authors\":\"Georgios Dimitroglou Rizell\",\"doi\":\"arxiv-2408.16614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that two-dimensional totally real concordances can be approximated by\\nLagrangian concordances after sufficiently many positive and negative\\nstabilisations of the Legendrian boundaries. The applications of this result\\nare the construction of knotted Lagrangian concordances, and knotted Lagrangian\\ntori in symplectisations of overtwisted contact manifolds.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,二维全实协整在对 Legendrian 边界进行足够多的正负稳定化处理后,可以用拉格朗日协整近似。这一结果的应用是构造结拉格朗日协程,以及过扭曲接触流形交映中的结拉格朗日。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lagrangian Approximation of Totally Real Concordances
We show that two-dimensional totally real concordances can be approximated by Lagrangian concordances after sufficiently many positive and negative stabilisations of the Legendrian boundaries. The applications of this result are the construction of knotted Lagrangian concordances, and knotted Lagrangian tori in symplectisations of overtwisted contact manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信