对数泊松流形的半经典霍奇理论

Aidan Lindberg, Brent Pym
{"title":"对数泊松流形的半经典霍奇理论","authors":"Aidan Lindberg, Brent Pym","doi":"arxiv-2408.16685","DOIUrl":null,"url":null,"abstract":"We construct a mixed Hodge structure on the topological K-theory of smooth\nPoisson varieties, depending weakly on a choice of compactification. We\nestablish a package of tools for calculations with these structures, such as\nfunctoriality statements, projective bundle formulae, Gysin sequences and\nTorelli properties. We show that for varieties with trivial A-hat class, the\ncorresponding period maps for families can be written as exponential maps for\nbundles of tori, which we call the \"quantum parameters\". As justification for\nthe terminology, we show that in many interesting examples, the quantum\nparameters of a Poisson variety coincide with the parameters appearing in its\nknown deformation quantizations. In particular, we give a detailed\nimplementation of an argument of Kontsevich, to prove that his canonical\nquantization formula, when applied to Poisson tori, yields noncommutative tori\nwith parameter \"$q = e^\\hbar$\".","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semiclassical Hodge theory for log Poisson manifolds\",\"authors\":\"Aidan Lindberg, Brent Pym\",\"doi\":\"arxiv-2408.16685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a mixed Hodge structure on the topological K-theory of smooth\\nPoisson varieties, depending weakly on a choice of compactification. We\\nestablish a package of tools for calculations with these structures, such as\\nfunctoriality statements, projective bundle formulae, Gysin sequences and\\nTorelli properties. We show that for varieties with trivial A-hat class, the\\ncorresponding period maps for families can be written as exponential maps for\\nbundles of tori, which we call the \\\"quantum parameters\\\". As justification for\\nthe terminology, we show that in many interesting examples, the quantum\\nparameters of a Poisson variety coincide with the parameters appearing in its\\nknown deformation quantizations. In particular, we give a detailed\\nimplementation of an argument of Kontsevich, to prove that his canonical\\nquantization formula, when applied to Poisson tori, yields noncommutative tori\\nwith parameter \\\"$q = e^\\\\hbar$\\\".\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们在光滑泊松数拓扑 K 理论上构建了一种混合霍奇结构,它弱地依赖于对紧凑化的选择。我们建立了一套计算这些结构的工具,如矢量性声明、投影束公式、Gysin 序列和 Torelli 性质。我们证明,对于具有微不足道的 A-hat 类的变种,族的相应周期映射可以写成环束的指数映射,我们称之为 "量子参数"。为了证明这个术语的合理性,我们证明了在许多有趣的例子中,泊松数的量子参数与其已知变形量子化中出现的参数是重合的。特别是,我们给出了康采维奇的一个论证的详细实现,以证明他的经典量子化公式应用于泊松环时,会产生参数为"$q = e^\hbar$"的非交换环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semiclassical Hodge theory for log Poisson manifolds
We construct a mixed Hodge structure on the topological K-theory of smooth Poisson varieties, depending weakly on a choice of compactification. We establish a package of tools for calculations with these structures, such as functoriality statements, projective bundle formulae, Gysin sequences and Torelli properties. We show that for varieties with trivial A-hat class, the corresponding period maps for families can be written as exponential maps for bundles of tori, which we call the "quantum parameters". As justification for the terminology, we show that in many interesting examples, the quantum parameters of a Poisson variety coincide with the parameters appearing in its known deformation quantizations. In particular, we give a detailed implementation of an argument of Kontsevich, to prove that his canonical quantization formula, when applied to Poisson tori, yields noncommutative tori with parameter "$q = e^\hbar$".
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信