距离函数的边界正则性和埃克纳方程

Nikolai Nikolov, Pascal J. Thomas
{"title":"距离函数的边界正则性和埃克纳方程","authors":"Nikolai Nikolov, Pascal J. Thomas","doi":"arxiv-2409.01774","DOIUrl":null,"url":null,"abstract":"We study the gain in regularity of the distance to the boundary of a domain\nin $\\R^m$. In particular, we show that if the signed distance function happens\nto be merely differentiable in a neighborhood of a boundary point, it and the\nboundary have to be $\\mathcal C^{1,1}$ regular. Conversely, we study the\nregularity of the distance function under regularity hypotheses of the\nboundary. Along the way, we point out that any solution to the eikonal\nequation, differentiable everywhere in a domain of the Euclidean space, admits\na gradient which is locally Lipschitz.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundary regularity for the distance functions, and the eikonal equation\",\"authors\":\"Nikolai Nikolov, Pascal J. Thomas\",\"doi\":\"arxiv-2409.01774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the gain in regularity of the distance to the boundary of a domain\\nin $\\\\R^m$. In particular, we show that if the signed distance function happens\\nto be merely differentiable in a neighborhood of a boundary point, it and the\\nboundary have to be $\\\\mathcal C^{1,1}$ regular. Conversely, we study the\\nregularity of the distance function under regularity hypotheses of the\\nboundary. Along the way, we point out that any solution to the eikonal\\nequation, differentiable everywhere in a domain of the Euclidean space, admits\\na gradient which is locally Lipschitz.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了在 $\R^m$ 中域边界距离的正则性增益。我们特别指出,如果有符号的距离函数恰好在边界点的邻域中仅可微分,那么它和边界必须是 $\mathcal C^{1,1}$ 正则的。反过来,我们研究边界正则性假设下距离函数的正则性。同时,我们还指出,在欧几里得空间的一个域中,eikonalequation 的任何解在任何地方都是可微的,它的梯度都是局部 Lipschitz 的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundary regularity for the distance functions, and the eikonal equation
We study the gain in regularity of the distance to the boundary of a domain in $\R^m$. In particular, we show that if the signed distance function happens to be merely differentiable in a neighborhood of a boundary point, it and the boundary have to be $\mathcal C^{1,1}$ regular. Conversely, we study the regularity of the distance function under regularity hypotheses of the boundary. Along the way, we point out that any solution to the eikonal equation, differentiable everywhere in a domain of the Euclidean space, admits a gradient which is locally Lipschitz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信