计算魏尔斯特拉斯函数的兰登式方法

Matvey Smirnov, Kirill Malkov, Sergey Rogovoy
{"title":"计算魏尔斯特拉斯函数的兰登式方法","authors":"Matvey Smirnov, Kirill Malkov, Sergey Rogovoy","doi":"arxiv-2408.05252","DOIUrl":null,"url":null,"abstract":"We establish a version of the Landen's transformation for Weierstrass\nfunctions and invariants that is applicable to general lattices in complex\nplane. Using it we present an effective method for computing Weierstrass\nfunctions, their periods, and elliptic integral in Weierstrass form given\nWeierstrass invariants $g_2$ and $g_3$ of an elliptic curve. Similarly to the\nclassical Landen's method our algorithm has quadratic rate of convergence.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Landen-type method for computation of Weierstrass functions\",\"authors\":\"Matvey Smirnov, Kirill Malkov, Sergey Rogovoy\",\"doi\":\"arxiv-2408.05252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish a version of the Landen's transformation for Weierstrass\\nfunctions and invariants that is applicable to general lattices in complex\\nplane. Using it we present an effective method for computing Weierstrass\\nfunctions, their periods, and elliptic integral in Weierstrass form given\\nWeierstrass invariants $g_2$ and $g_3$ of an elliptic curve. Similarly to the\\nclassical Landen's method our algorithm has quadratic rate of convergence.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.05252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了一个适用于复平面一般网格的魏尔斯特拉斯函数和不变式的兰登变换版本。利用它,我们提出了一种有效的方法,在给定椭圆曲线的魏尔斯特拉斯不变式 $g_2$ 和 $g_3$ 的情况下,以魏尔斯特拉斯形式计算魏尔斯特拉斯函数及其周期和椭圆积分。与经典的兰登方法类似,我们的算法具有二次收敛率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Landen-type method for computation of Weierstrass functions
We establish a version of the Landen's transformation for Weierstrass functions and invariants that is applicable to general lattices in complex plane. Using it we present an effective method for computing Weierstrass functions, their periods, and elliptic integral in Weierstrass form given Weierstrass invariants $g_2$ and $g_3$ of an elliptic curve. Similarly to the classical Landen's method our algorithm has quadratic rate of convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信