次一般位置超曲面的非阿基米德第二主定理

Ta Thi Hoai An, William Cherry, Nguyen Viet Phuong
{"title":"次一般位置超曲面的非阿基米德第二主定理","authors":"Ta Thi Hoai An, William Cherry, Nguyen Viet Phuong","doi":"arxiv-2408.07210","DOIUrl":null,"url":null,"abstract":"We apply an idea of Levin to obtain a non-truncated second main theorem for\nnon-Archimedean analytic maps approximating algebraic hypersurfaces in\nsubgeneral position. In some cases, for example when all the hypersurfaces are\nnon-linear and all the intersections are transverse, this improves an\ninequality of Quang, whose inequality is sharp for the case of hyperplanes in\nsubgeneral position.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Non-Archimedean Second Main Theorem for Hypersurfaces in Subgeneral Position\",\"authors\":\"Ta Thi Hoai An, William Cherry, Nguyen Viet Phuong\",\"doi\":\"arxiv-2408.07210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply an idea of Levin to obtain a non-truncated second main theorem for\\nnon-Archimedean analytic maps approximating algebraic hypersurfaces in\\nsubgeneral position. In some cases, for example when all the hypersurfaces are\\nnon-linear and all the intersections are transverse, this improves an\\ninequality of Quang, whose inequality is sharp for the case of hyperplanes in\\nsubgeneral position.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.07210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们应用列文的一个思想,得到了非阿基米德解析映射逼近代数超曲面非次要位置的非截断第二主定理。在某些情况下,例如当所有超曲面都不是非线性的,并且所有交点都是横向的时候,这改进了 Quang 的一个不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Non-Archimedean Second Main Theorem for Hypersurfaces in Subgeneral Position
We apply an idea of Levin to obtain a non-truncated second main theorem for non-Archimedean analytic maps approximating algebraic hypersurfaces in subgeneral position. In some cases, for example when all the hypersurfaces are non-linear and all the intersections are transverse, this improves an inequality of Quang, whose inequality is sharp for the case of hyperplanes in subgeneral position.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信