Ta Thi Hoai An, William Cherry, Nguyen Viet Phuong
{"title":"次一般位置超曲面的非阿基米德第二主定理","authors":"Ta Thi Hoai An, William Cherry, Nguyen Viet Phuong","doi":"arxiv-2408.07210","DOIUrl":null,"url":null,"abstract":"We apply an idea of Levin to obtain a non-truncated second main theorem for\nnon-Archimedean analytic maps approximating algebraic hypersurfaces in\nsubgeneral position. In some cases, for example when all the hypersurfaces are\nnon-linear and all the intersections are transverse, this improves an\ninequality of Quang, whose inequality is sharp for the case of hyperplanes in\nsubgeneral position.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Non-Archimedean Second Main Theorem for Hypersurfaces in Subgeneral Position\",\"authors\":\"Ta Thi Hoai An, William Cherry, Nguyen Viet Phuong\",\"doi\":\"arxiv-2408.07210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply an idea of Levin to obtain a non-truncated second main theorem for\\nnon-Archimedean analytic maps approximating algebraic hypersurfaces in\\nsubgeneral position. In some cases, for example when all the hypersurfaces are\\nnon-linear and all the intersections are transverse, this improves an\\ninequality of Quang, whose inequality is sharp for the case of hyperplanes in\\nsubgeneral position.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.07210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Non-Archimedean Second Main Theorem for Hypersurfaces in Subgeneral Position
We apply an idea of Levin to obtain a non-truncated second main theorem for
non-Archimedean analytic maps approximating algebraic hypersurfaces in
subgeneral position. In some cases, for example when all the hypersurfaces are
non-linear and all the intersections are transverse, this improves an
inequality of Quang, whose inequality is sharp for the case of hyperplanes in
subgeneral position.