具有给定边界值的 $m$ 次谐函数加权能级中的复杂 $m$-Hessian 型方程

Nguyen Van Phu, Nguyen Quang Dieu
{"title":"具有给定边界值的 $m$ 次谐函数加权能级中的复杂 $m$-Hessian 型方程","authors":"Nguyen Van Phu, Nguyen Quang Dieu","doi":"arxiv-2408.07528","DOIUrl":null,"url":null,"abstract":"In this paper, we concern with the existence of solutions of the complex\n$m-$Hessian type equation $-\\chi(u)H_{m}(u)=\\mu$ in the class\n$\\mathcal{E}_{m,\\chi}(f,\\Omega)$ if there exists subsolution in this class,\nwhere the given boundary value $f\\in\\mathcal{N}_m(\\Omega)\\cap MSH_m(\\Omega).$","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex $m$-Hessian type equations in weighted energy classes of $m$-subharmonic functions with given boundary value\",\"authors\":\"Nguyen Van Phu, Nguyen Quang Dieu\",\"doi\":\"arxiv-2408.07528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we concern with the existence of solutions of the complex\\n$m-$Hessian type equation $-\\\\chi(u)H_{m}(u)=\\\\mu$ in the class\\n$\\\\mathcal{E}_{m,\\\\chi}(f,\\\\Omega)$ if there exists subsolution in this class,\\nwhere the given boundary value $f\\\\in\\\\mathcal{N}_m(\\\\Omega)\\\\cap MSH_m(\\\\Omega).$\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.07528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文关注复$m-$Hessian型方程$-\chi(u)H_{m}(u)=\mu$在类$\mathcal{E}_{m,\chi}(f,\Omega)$中的解的存在性,如果该类中存在子解,其中给定边界值$f\in\mathcal{N}_m(\Omega)\cap MSH_m(\Omega)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complex $m$-Hessian type equations in weighted energy classes of $m$-subharmonic functions with given boundary value
In this paper, we concern with the existence of solutions of the complex $m-$Hessian type equation $-\chi(u)H_{m}(u)=\mu$ in the class $\mathcal{E}_{m,\chi}(f,\Omega)$ if there exists subsolution in this class, where the given boundary value $f\in\mathcal{N}_m(\Omega)\cap MSH_m(\Omega).$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信