具有有限类型边界的斯坦因空间上伯格曼核的局部代数性和局部化

Peter Ebenfelt, Soumya Ganguly, Ming Xiao
{"title":"具有有限类型边界的斯坦因空间上伯格曼核的局部代数性和局部化","authors":"Peter Ebenfelt, Soumya Ganguly, Ming Xiao","doi":"arxiv-2408.13989","DOIUrl":null,"url":null,"abstract":"On a two dimensional Stein space with isolated, normal singularities, smooth\nfinite type boundary, and locally algebraic Bergman kernel, we establish an\nestimate on the type of the boundary in terms of the local algebraic degree of\nthe Bergman kernel. As an application, we characterize two dimensional ball\nquotients as the only Stein spaces with smooth finite type boundary and locally\nrational Bergman kernel. A key ingredient in the proof of the degree estimate\nis a new localization result for the Bergman kernel of a pseudoconvex, finite\ntype domain in a complex manifold.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local algebraicity and localization of the Bergman kernel on Stein spaces with finite type boundaries\",\"authors\":\"Peter Ebenfelt, Soumya Ganguly, Ming Xiao\",\"doi\":\"arxiv-2408.13989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On a two dimensional Stein space with isolated, normal singularities, smooth\\nfinite type boundary, and locally algebraic Bergman kernel, we establish an\\nestimate on the type of the boundary in terms of the local algebraic degree of\\nthe Bergman kernel. As an application, we characterize two dimensional ball\\nquotients as the only Stein spaces with smooth finite type boundary and locally\\nrational Bergman kernel. A key ingredient in the proof of the degree estimate\\nis a new localization result for the Bergman kernel of a pseudoconvex, finite\\ntype domain in a complex manifold.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.13989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在具有孤立法向奇点、光滑有限型边界和局部代数伯格曼核的二维斯坦因空间上,我们根据伯格曼核的局部代数度建立了对边界类型的估计。作为应用,我们将二维球曲描述为唯一具有光滑有限型边界和局部有理伯格曼核的斯坦因空间。证明度估计的一个关键要素是复流形中假凸、有限类型域的伯格曼核的新局部化结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local algebraicity and localization of the Bergman kernel on Stein spaces with finite type boundaries
On a two dimensional Stein space with isolated, normal singularities, smooth finite type boundary, and locally algebraic Bergman kernel, we establish an estimate on the type of the boundary in terms of the local algebraic degree of the Bergman kernel. As an application, we characterize two dimensional ball quotients as the only Stein spaces with smooth finite type boundary and locally rational Bergman kernel. A key ingredient in the proof of the degree estimate is a new localization result for the Bergman kernel of a pseudoconvex, finite type domain in a complex manifold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信