关于马泰-萨利姆定理

Arturo Fernández-Pérez, Nancy Saravia-Molina
{"title":"关于马泰-萨利姆定理","authors":"Arturo Fernández-Pérez, Nancy Saravia-Molina","doi":"arxiv-2408.10767","DOIUrl":null,"url":null,"abstract":"We investigate the relationship between the valuations of a germ of a\nsingular foliation $\\mathcal{F}$ on the complex plane and those of a balanced\nequation of separatrices for $\\mathcal{F}$, extending a theorem by\nMattei-Salem. Under certain conditions, we also derive inequalities involving\nthe valuation, tangency excess, and degree of a holomorphic foliation\n$\\mathcal{F}$ on the complex projective plane.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a Mattei-Salem theorem\",\"authors\":\"Arturo Fernández-Pérez, Nancy Saravia-Molina\",\"doi\":\"arxiv-2408.10767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the relationship between the valuations of a germ of a\\nsingular foliation $\\\\mathcal{F}$ on the complex plane and those of a balanced\\nequation of separatrices for $\\\\mathcal{F}$, extending a theorem by\\nMattei-Salem. Under certain conditions, we also derive inequalities involving\\nthe valuation, tangency excess, and degree of a holomorphic foliation\\n$\\\\mathcal{F}$ on the complex projective plane.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.10767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们扩展了马泰-萨利姆(Mattei-Salem)的一个定理,研究了复平面上的全形叶状$\mathcal{F}$的估值与$\mathcal{F}$的平衡分离方程的估值之间的关系。在某些条件下,我们还推导出了涉及复投影面上全形拓扑 $\mathcal{F}$ 的估值、切超量和度的不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a Mattei-Salem theorem
We investigate the relationship between the valuations of a germ of a singular foliation $\mathcal{F}$ on the complex plane and those of a balanced equation of separatrices for $\mathcal{F}$, extending a theorem by Mattei-Salem. Under certain conditions, we also derive inequalities involving the valuation, tangency excess, and degree of a holomorphic foliation $\mathcal{F}$ on the complex projective plane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信