{"title":"关于马泰-萨利姆定理","authors":"Arturo Fernández-Pérez, Nancy Saravia-Molina","doi":"arxiv-2408.10767","DOIUrl":null,"url":null,"abstract":"We investigate the relationship between the valuations of a germ of a\nsingular foliation $\\mathcal{F}$ on the complex plane and those of a balanced\nequation of separatrices for $\\mathcal{F}$, extending a theorem by\nMattei-Salem. Under certain conditions, we also derive inequalities involving\nthe valuation, tangency excess, and degree of a holomorphic foliation\n$\\mathcal{F}$ on the complex projective plane.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a Mattei-Salem theorem\",\"authors\":\"Arturo Fernández-Pérez, Nancy Saravia-Molina\",\"doi\":\"arxiv-2408.10767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the relationship between the valuations of a germ of a\\nsingular foliation $\\\\mathcal{F}$ on the complex plane and those of a balanced\\nequation of separatrices for $\\\\mathcal{F}$, extending a theorem by\\nMattei-Salem. Under certain conditions, we also derive inequalities involving\\nthe valuation, tangency excess, and degree of a holomorphic foliation\\n$\\\\mathcal{F}$ on the complex projective plane.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.10767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We investigate the relationship between the valuations of a germ of a
singular foliation $\mathcal{F}$ on the complex plane and those of a balanced
equation of separatrices for $\mathcal{F}$, extending a theorem by
Mattei-Salem. Under certain conditions, we also derive inequalities involving
the valuation, tangency excess, and degree of a holomorphic foliation
$\mathcal{F}$ on the complex projective plane.