关于某些线性偏 $q$-差分-微分方程的参数 $0$-Gevrey 两级渐近展开

Alberto Lastra, Stephane Malek
{"title":"关于某些线性偏 $q$-差分-微分方程的参数 $0$-Gevrey 两级渐近展开","authors":"Alberto Lastra, Stephane Malek","doi":"arxiv-2408.12335","DOIUrl":null,"url":null,"abstract":"A novel asymptotic representation of the analytic solutions to a family of\nsingularly perturbed $q-$difference-differential equations in the complex\ndomain is obtained. Such asymptotic relation shows two different levels\nassociated to the vanishing rate of the domains of the coefficients in the\nformal asymptotic expansion. On the way, a novel version of a multilevel\nsequential Ramis-Sibuya type theorem is achieved.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On parametric $0$-Gevrey asymptotic expansions in two levels for some linear partial $q$-difference-differential equations\",\"authors\":\"Alberto Lastra, Stephane Malek\",\"doi\":\"arxiv-2408.12335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel asymptotic representation of the analytic solutions to a family of\\nsingularly perturbed $q-$difference-differential equations in the complex\\ndomain is obtained. Such asymptotic relation shows two different levels\\nassociated to the vanishing rate of the domains of the coefficients in the\\nformal asymptotic expansion. On the way, a novel version of a multilevel\\nsequential Ramis-Sibuya type theorem is achieved.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.12335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.12335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究获得了复域中一系列奇异扰动 $q-$ 差分微分方程解析解的一种新的渐近表示。这种渐近关系显示了与形渐近展开中系数域的消失率相关的两个不同层次。在此过程中,实现了多级序列 Ramis-Sibuya 型定理的新版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On parametric $0$-Gevrey asymptotic expansions in two levels for some linear partial $q$-difference-differential equations
A novel asymptotic representation of the analytic solutions to a family of singularly perturbed $q-$difference-differential equations in the complex domain is obtained. Such asymptotic relation shows two different levels associated to the vanishing rate of the domains of the coefficients in the formal asymptotic expansion. On the way, a novel version of a multilevel sequential Ramis-Sibuya type theorem is achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信