双复米勒-罗斯函数的性质和应用

Snehasis Bera, Sourav Das, Abhijit Banerjee
{"title":"双复米勒-罗斯函数的性质和应用","authors":"Snehasis Bera, Sourav Das, Abhijit Banerjee","doi":"arxiv-2408.13246","DOIUrl":null,"url":null,"abstract":"In this work, Miller Ross function with bicomplex arguments has been\nintroduced. Various properties of this function including recurrence relations,\nintegral representations and differential relations are established.\nFurthermore, the bicomplex holomorphicity and Taylor series representation of\nthis function are discussed, along with the derivation of a differential\nequation. Finally, as applications some relations of fractional order\nderivatives and solutions for the bicomplex extension of the generalized\nfractional kinetic equation involving the bicomplex Miller Ross function are\nderived.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties and applications of the Bicomplex Miller-Ross function\",\"authors\":\"Snehasis Bera, Sourav Das, Abhijit Banerjee\",\"doi\":\"arxiv-2408.13246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, Miller Ross function with bicomplex arguments has been\\nintroduced. Various properties of this function including recurrence relations,\\nintegral representations and differential relations are established.\\nFurthermore, the bicomplex holomorphicity and Taylor series representation of\\nthis function are discussed, along with the derivation of a differential\\nequation. Finally, as applications some relations of fractional order\\nderivatives and solutions for the bicomplex extension of the generalized\\nfractional kinetic equation involving the bicomplex Miller Ross function are\\nderived.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.13246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了具有二复数参数的米勒-罗斯函数。此外,还讨论了该函数的二元全形性和泰勒级数表示,以及微分方程的推导。最后,作为应用,推导出了涉及二元米勒-罗斯函数的广义分数动力学方程的二元扩展的一些分数阶阶分和解的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Properties and applications of the Bicomplex Miller-Ross function
In this work, Miller Ross function with bicomplex arguments has been introduced. Various properties of this function including recurrence relations, integral representations and differential relations are established. Furthermore, the bicomplex holomorphicity and Taylor series representation of this function are discussed, along with the derivation of a differential equation. Finally, as applications some relations of fractional order derivatives and solutions for the bicomplex extension of the generalized fractional kinetic equation involving the bicomplex Miller Ross function are derived.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信