$overline{partial}$-有界 Lipschitz 域乘积的估计值

Song-Ying Li, Sujuan Long, Jie Lao
{"title":"$overline{partial}$-有界 Lipschitz 域乘积的估计值","authors":"Song-Ying Li, Sujuan Long, Jie Lao","doi":"arxiv-2409.00293","DOIUrl":null,"url":null,"abstract":"Let $D$ be a bounded domain in the complex plane with Lipschitz boundary. In\nthe paper, we construct an integral solution operator $T[f]$ for any\n$\\overline{\\partial}$ closed $(0,1)$-form $f\\in L^p_{(0,1)}(D^n)$ solving the\nCauchy-Riemain equation $\\overline{\\partial} u=f$ on the product domains $D^n$\nand obtain the $L^p$-estimates for all $1<p\\le \\infty$.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"178 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$\\\\overline{\\\\partial}$-Estimates on the product of bounded Lipschitz domain\",\"authors\":\"Song-Ying Li, Sujuan Long, Jie Lao\",\"doi\":\"arxiv-2409.00293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $D$ be a bounded domain in the complex plane with Lipschitz boundary. In\\nthe paper, we construct an integral solution operator $T[f]$ for any\\n$\\\\overline{\\\\partial}$ closed $(0,1)$-form $f\\\\in L^p_{(0,1)}(D^n)$ solving the\\nCauchy-Riemain equation $\\\\overline{\\\\partial} u=f$ on the product domains $D^n$\\nand obtain the $L^p$-estimates for all $1<p\\\\le \\\\infty$.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"178 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $D$ 是复平面上的有界域,具有 Lipschitz 边界。在本文中,我们为 L^p_{(0,1)}(D^n)$ 中任意$overline{partial}$闭$(0,1)$形式的$f/$求解乘积域$D^n$上的考奇-里曼方程$\overline{partial} u=f$ 构造了一个积分解算子$T[f]$,并得到了所有$1本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
$\overline{\partial}$-Estimates on the product of bounded Lipschitz domain
Let $D$ be a bounded domain in the complex plane with Lipschitz boundary. In the paper, we construct an integral solution operator $T[f]$ for any $\overline{\partial}$ closed $(0,1)$-form $f\in L^p_{(0,1)}(D^n)$ solving the Cauchy-Riemain equation $\overline{\partial} u=f$ on the product domains $D^n$ and obtain the $L^p$-estimates for all $1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信