涉及某些类解析函数的施瓦茨函数的夏普玻尔半径

Molla Basir Ahamed, Partha Pratim Roy
{"title":"涉及某些类解析函数的施瓦茨函数的夏普玻尔半径","authors":"Molla Basir Ahamed, Partha Pratim Roy","doi":"arxiv-2408.14773","DOIUrl":null,"url":null,"abstract":"The Bohr radius for an arbitrary class $\\mathcal{F}$ of analytic functions of\nthe form $f(z)=\\sum_{n=0}^{\\infty}a_nz^n$ on the unit disk\n$\\mathbb{D}=\\{z\\in\\mathbb{C} : |z|<1\\}$ is the largest radius $R_{\\mathcal{F}}$\nsuch that every function $f\\in\\mathcal{F}$ satisfies the inequality\n\\begin{align*} d\\left(\\sum_{n=0}^{\\infty}|a_nz^n|,\n|f(0)|\\right)=\\sum_{n=1}^{\\infty}|a_nz^n|\\leq d(f(0), \\partial f(\\mathbb{D})),\n\\end{align*} for all $|z|=r\\leq R_{\\mathcal{F}}$ , where $d(0, \\partial\nf(\\mathbb{D}))$ is the Euclidean distance. In this paper, our aim is to\ndetermine the sharp improved Bohr radius for the classes of analytic functions\n$f$ satisfying differential subordination relation $zf^{\\prime}(z)/f(z)\\prec\nh(z)$ and $f(z)+\\beta zf^{\\prime}(z)+\\gamma z^2f^{\\prime\\prime}(z)\\prec h(z)$,\nwhere $h$ is the Janowski function. We show that improved Bohr radius can be\nobtained for Janowski functions as root of an equation involving Bessel\nfunction of first kind. Analogues results are obtained in this paper for\n$\\alpha$-convex functions and typically real functions, respectively. All\nobtained results in the paper are sharp and are improved version of [{Bull.\nMalays. Math. Sci. Soc.} (2021) 44:1771-1785].","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"729 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp Bohr radius involving Schwarz functions for certain classes of analytic functions\",\"authors\":\"Molla Basir Ahamed, Partha Pratim Roy\",\"doi\":\"arxiv-2408.14773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Bohr radius for an arbitrary class $\\\\mathcal{F}$ of analytic functions of\\nthe form $f(z)=\\\\sum_{n=0}^{\\\\infty}a_nz^n$ on the unit disk\\n$\\\\mathbb{D}=\\\\{z\\\\in\\\\mathbb{C} : |z|<1\\\\}$ is the largest radius $R_{\\\\mathcal{F}}$\\nsuch that every function $f\\\\in\\\\mathcal{F}$ satisfies the inequality\\n\\\\begin{align*} d\\\\left(\\\\sum_{n=0}^{\\\\infty}|a_nz^n|,\\n|f(0)|\\\\right)=\\\\sum_{n=1}^{\\\\infty}|a_nz^n|\\\\leq d(f(0), \\\\partial f(\\\\mathbb{D})),\\n\\\\end{align*} for all $|z|=r\\\\leq R_{\\\\mathcal{F}}$ , where $d(0, \\\\partial\\nf(\\\\mathbb{D}))$ is the Euclidean distance. In this paper, our aim is to\\ndetermine the sharp improved Bohr radius for the classes of analytic functions\\n$f$ satisfying differential subordination relation $zf^{\\\\prime}(z)/f(z)\\\\prec\\nh(z)$ and $f(z)+\\\\beta zf^{\\\\prime}(z)+\\\\gamma z^2f^{\\\\prime\\\\prime}(z)\\\\prec h(z)$,\\nwhere $h$ is the Janowski function. We show that improved Bohr radius can be\\nobtained for Janowski functions as root of an equation involving Bessel\\nfunction of first kind. Analogues results are obtained in this paper for\\n$\\\\alpha$-convex functions and typically real functions, respectively. All\\nobtained results in the paper are sharp and are improved version of [{Bull.\\nMalays. Math. Sci. Soc.} (2021) 44:1771-1785].\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"729 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.14773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在单位圆盘$\mathbb{D}=\{z\in\mathbb{C}上,形式为$f(z)=\sum_{n=0}^{\infty}a_nz^n$的解析函数的任意类$\mathcal{F}$的玻尔半径为|z|<1\}$是最大的半径$R_{\mathcal{F}}$,使得每个函数$f\in\mathcal{F}$满足不等式begin{align*} d\left(\sum_n=0}^{\infty}|a_nz^n|、|f(0)|right)=\sum_{n=1}^{\infty}|a_nz^n|leq d(f(0), \partial f(\mathbb{D})),\end{align*} for all $|z|=r\leq R_{mathcal{F}}$ , 其中 $d(0, \partialf(\mathbb{D}))$ 是欧氏距离。在本文中,我们的目的是为满足微分从属关系 $zf^{\prime}(z)/f(z)\prech(z)$ 和 $f(z)+\beta zf^{\prime}(z)+\gamma z^2f^{\prime\prime}(z)\prec h(z)$ 的解析函数类确定尖锐的改进玻尔半径,其中 $h$ 是雅诺夫斯基函数。我们证明,改进的玻尔半径可以作为涉及第一类贝塞尔函数的方程的根来获得。本文分别针对$\alpha$-凸函数和典型实函数得到了类似结果。本文得到的所有结果都很尖锐,是[{Bull.Malaysal. Math. Sci. Soc.} (2021) 44:1771-1785] 的改进版。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp Bohr radius involving Schwarz functions for certain classes of analytic functions
The Bohr radius for an arbitrary class $\mathcal{F}$ of analytic functions of the form $f(z)=\sum_{n=0}^{\infty}a_nz^n$ on the unit disk $\mathbb{D}=\{z\in\mathbb{C} : |z|<1\}$ is the largest radius $R_{\mathcal{F}}$ such that every function $f\in\mathcal{F}$ satisfies the inequality \begin{align*} d\left(\sum_{n=0}^{\infty}|a_nz^n|, |f(0)|\right)=\sum_{n=1}^{\infty}|a_nz^n|\leq d(f(0), \partial f(\mathbb{D})), \end{align*} for all $|z|=r\leq R_{\mathcal{F}}$ , where $d(0, \partial f(\mathbb{D}))$ is the Euclidean distance. In this paper, our aim is to determine the sharp improved Bohr radius for the classes of analytic functions $f$ satisfying differential subordination relation $zf^{\prime}(z)/f(z)\prec h(z)$ and $f(z)+\beta zf^{\prime}(z)+\gamma z^2f^{\prime\prime}(z)\prec h(z)$, where $h$ is the Janowski function. We show that improved Bohr radius can be obtained for Janowski functions as root of an equation involving Bessel function of first kind. Analogues results are obtained in this paper for $\alpha$-convex functions and typically real functions, respectively. All obtained results in the paper are sharp and are improved version of [{Bull. Malays. Math. Sci. Soc.} (2021) 44:1771-1785].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信