{"title":"某类解析函数的锐凹半径","authors":"Molla Basir Ahamed, Rajesh Hossain","doi":"arxiv-2408.15544","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{A}$ be the class of all analytic functions $f$ defined on the\nopen unit disk $\\mathbb{D}$ with the normalization $f(0)=0=f^{\\prime}(0)-1$.\nThis paper examines the radius of concavity for various subclasses of\n$\\mathcal{A}$, namely $\\mathcal{S}_0^{(n)}$, $\\mathcal{K(\\alpha,\\beta)}$,\n$\\mathcal{\\tilde{S^*}(\\beta)}$, and $\\mathcal{S}^*(\\alpha)$. It also presents\nresults for various classes of analytic functions on the unit disk. All the\nradii are best possible.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp radius of concavity for certain classes of analytic functions\",\"authors\":\"Molla Basir Ahamed, Rajesh Hossain\",\"doi\":\"arxiv-2408.15544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathcal{A}$ be the class of all analytic functions $f$ defined on the\\nopen unit disk $\\\\mathbb{D}$ with the normalization $f(0)=0=f^{\\\\prime}(0)-1$.\\nThis paper examines the radius of concavity for various subclasses of\\n$\\\\mathcal{A}$, namely $\\\\mathcal{S}_0^{(n)}$, $\\\\mathcal{K(\\\\alpha,\\\\beta)}$,\\n$\\\\mathcal{\\\\tilde{S^*}(\\\\beta)}$, and $\\\\mathcal{S}^*(\\\\alpha)$. It also presents\\nresults for various classes of analytic functions on the unit disk. All the\\nradii are best possible.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sharp radius of concavity for certain classes of analytic functions
Let $\mathcal{A}$ be the class of all analytic functions $f$ defined on the
open unit disk $\mathbb{D}$ with the normalization $f(0)=0=f^{\prime}(0)-1$.
This paper examines the radius of concavity for various subclasses of
$\mathcal{A}$, namely $\mathcal{S}_0^{(n)}$, $\mathcal{K(\alpha,\beta)}$,
$\mathcal{\tilde{S^*}(\beta)}$, and $\mathcal{S}^*(\alpha)$. It also presents
results for various classes of analytic functions on the unit disk. All the
radii are best possible.