某类解析函数的锐凹半径

Molla Basir Ahamed, Rajesh Hossain
{"title":"某类解析函数的锐凹半径","authors":"Molla Basir Ahamed, Rajesh Hossain","doi":"arxiv-2408.15544","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{A}$ be the class of all analytic functions $f$ defined on the\nopen unit disk $\\mathbb{D}$ with the normalization $f(0)=0=f^{\\prime}(0)-1$.\nThis paper examines the radius of concavity for various subclasses of\n$\\mathcal{A}$, namely $\\mathcal{S}_0^{(n)}$, $\\mathcal{K(\\alpha,\\beta)}$,\n$\\mathcal{\\tilde{S^*}(\\beta)}$, and $\\mathcal{S}^*(\\alpha)$. It also presents\nresults for various classes of analytic functions on the unit disk. All the\nradii are best possible.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp radius of concavity for certain classes of analytic functions\",\"authors\":\"Molla Basir Ahamed, Rajesh Hossain\",\"doi\":\"arxiv-2408.15544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathcal{A}$ be the class of all analytic functions $f$ defined on the\\nopen unit disk $\\\\mathbb{D}$ with the normalization $f(0)=0=f^{\\\\prime}(0)-1$.\\nThis paper examines the radius of concavity for various subclasses of\\n$\\\\mathcal{A}$, namely $\\\\mathcal{S}_0^{(n)}$, $\\\\mathcal{K(\\\\alpha,\\\\beta)}$,\\n$\\\\mathcal{\\\\tilde{S^*}(\\\\beta)}$, and $\\\\mathcal{S}^*(\\\\alpha)$. It also presents\\nresults for various classes of analytic functions on the unit disk. All the\\nradii are best possible.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设 $\mathcal{A}$ 是定义在开放单位盘 $\mathbb{D}$ 上的所有解析函数 $f$ 的类,其归一化为 $f(0)=0=f^\{prime}(0)-1$。本文研究了$\mathcal{A}$的各种子类,即$\mathcal{S}_0^{(n)}$、$\mathcal{K(\alpha,\beta)}$、$\mathcal{tilde{S^*}(\beta)}$和$\mathcal{S}^*(\alpha)$的凹半径。它还给出了单位盘上各类解析函数的结果。所有的adii都是最可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp radius of concavity for certain classes of analytic functions
Let $\mathcal{A}$ be the class of all analytic functions $f$ defined on the open unit disk $\mathbb{D}$ with the normalization $f(0)=0=f^{\prime}(0)-1$. This paper examines the radius of concavity for various subclasses of $\mathcal{A}$, namely $\mathcal{S}_0^{(n)}$, $\mathcal{K(\alpha,\beta)}$, $\mathcal{\tilde{S^*}(\beta)}$, and $\mathcal{S}^*(\alpha)$. It also presents results for various classes of analytic functions on the unit disk. All the radii are best possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信