Fabrizio CataneseBayreuth and KIAS Seoul, Davide FrapportiPolitecnico Milano, Christian GleissnerBayreuth, Wenfei LiuXiamen, Matthias SuchüttHannover
{"title":"论椭圆曲面的同调琐碎自形 I:$χ(S)=0$","authors":"Fabrizio CataneseBayreuth and KIAS Seoul, Davide FrapportiPolitecnico Milano, Christian GleissnerBayreuth, Wenfei LiuXiamen, Matthias SuchüttHannover","doi":"arxiv-2408.16936","DOIUrl":null,"url":null,"abstract":"In this first part we describe the group $Aut_{\\mathbb{Z}}(S)$ of\ncohomologically trivial automorphisms of a properly elliptic surface (a minimal\nsurface $S$ with Kodaira dimension $\\kappa(S)=1$), in the initial case $\n\\chi(\\mathcal{O}_S) =0$. In particular, in the case where $Aut_{\\mathbb{Z}}(S)$ is finite, we give the\nupper bound 4 for its cardinality, showing more precisely that if\n$Aut_{\\mathbb{Z}}(S)$ is nontrivial, it is one of the following groups:\n$\\mathbb{Z}/2, \\mathbb{Z}/3, (\\mathbb{Z}/2)^2$. We also show with easy examples\nthat the groups $\\mathbb{Z}/2, \\mathbb{Z}/3$ do effectively occur. Respectively, in the case where $Aut_{\\mathbb{Z}}(S)$ is infinite, we give\nthe sharp upper bound 2 for the number of its connected components.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the cohomologically trivial automorphisms of elliptic surfaces I: $χ(S)=0$\",\"authors\":\"Fabrizio CataneseBayreuth and KIAS Seoul, Davide FrapportiPolitecnico Milano, Christian GleissnerBayreuth, Wenfei LiuXiamen, Matthias SuchüttHannover\",\"doi\":\"arxiv-2408.16936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this first part we describe the group $Aut_{\\\\mathbb{Z}}(S)$ of\\ncohomologically trivial automorphisms of a properly elliptic surface (a minimal\\nsurface $S$ with Kodaira dimension $\\\\kappa(S)=1$), in the initial case $\\n\\\\chi(\\\\mathcal{O}_S) =0$. In particular, in the case where $Aut_{\\\\mathbb{Z}}(S)$ is finite, we give the\\nupper bound 4 for its cardinality, showing more precisely that if\\n$Aut_{\\\\mathbb{Z}}(S)$ is nontrivial, it is one of the following groups:\\n$\\\\mathbb{Z}/2, \\\\mathbb{Z}/3, (\\\\mathbb{Z}/2)^2$. We also show with easy examples\\nthat the groups $\\\\mathbb{Z}/2, \\\\mathbb{Z}/3$ do effectively occur. Respectively, in the case where $Aut_{\\\\mathbb{Z}}(S)$ is infinite, we give\\nthe sharp upper bound 2 for the number of its connected components.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the cohomologically trivial automorphisms of elliptic surfaces I: $χ(S)=0$
In this first part we describe the group $Aut_{\mathbb{Z}}(S)$ of
cohomologically trivial automorphisms of a properly elliptic surface (a minimal
surface $S$ with Kodaira dimension $\kappa(S)=1$), in the initial case $
\chi(\mathcal{O}_S) =0$. In particular, in the case where $Aut_{\mathbb{Z}}(S)$ is finite, we give the
upper bound 4 for its cardinality, showing more precisely that if
$Aut_{\mathbb{Z}}(S)$ is nontrivial, it is one of the following groups:
$\mathbb{Z}/2, \mathbb{Z}/3, (\mathbb{Z}/2)^2$. We also show with easy examples
that the groups $\mathbb{Z}/2, \mathbb{Z}/3$ do effectively occur. Respectively, in the case where $Aut_{\mathbb{Z}}(S)$ is infinite, we give
the sharp upper bound 2 for the number of its connected components.