论椭圆曲面的同调琐碎自形 I:$χ(S)=0$

Fabrizio CataneseBayreuth and KIAS Seoul, Davide FrapportiPolitecnico Milano, Christian GleissnerBayreuth, Wenfei LiuXiamen, Matthias SuchüttHannover
{"title":"论椭圆曲面的同调琐碎自形 I:$χ(S)=0$","authors":"Fabrizio CataneseBayreuth and KIAS Seoul, Davide FrapportiPolitecnico Milano, Christian GleissnerBayreuth, Wenfei LiuXiamen, Matthias SuchüttHannover","doi":"arxiv-2408.16936","DOIUrl":null,"url":null,"abstract":"In this first part we describe the group $Aut_{\\mathbb{Z}}(S)$ of\ncohomologically trivial automorphisms of a properly elliptic surface (a minimal\nsurface $S$ with Kodaira dimension $\\kappa(S)=1$), in the initial case $\n\\chi(\\mathcal{O}_S) =0$. In particular, in the case where $Aut_{\\mathbb{Z}}(S)$ is finite, we give the\nupper bound 4 for its cardinality, showing more precisely that if\n$Aut_{\\mathbb{Z}}(S)$ is nontrivial, it is one of the following groups:\n$\\mathbb{Z}/2, \\mathbb{Z}/3, (\\mathbb{Z}/2)^2$. We also show with easy examples\nthat the groups $\\mathbb{Z}/2, \\mathbb{Z}/3$ do effectively occur. Respectively, in the case where $Aut_{\\mathbb{Z}}(S)$ is infinite, we give\nthe sharp upper bound 2 for the number of its connected components.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the cohomologically trivial automorphisms of elliptic surfaces I: $χ(S)=0$\",\"authors\":\"Fabrizio CataneseBayreuth and KIAS Seoul, Davide FrapportiPolitecnico Milano, Christian GleissnerBayreuth, Wenfei LiuXiamen, Matthias SuchüttHannover\",\"doi\":\"arxiv-2408.16936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this first part we describe the group $Aut_{\\\\mathbb{Z}}(S)$ of\\ncohomologically trivial automorphisms of a properly elliptic surface (a minimal\\nsurface $S$ with Kodaira dimension $\\\\kappa(S)=1$), in the initial case $\\n\\\\chi(\\\\mathcal{O}_S) =0$. In particular, in the case where $Aut_{\\\\mathbb{Z}}(S)$ is finite, we give the\\nupper bound 4 for its cardinality, showing more precisely that if\\n$Aut_{\\\\mathbb{Z}}(S)$ is nontrivial, it is one of the following groups:\\n$\\\\mathbb{Z}/2, \\\\mathbb{Z}/3, (\\\\mathbb{Z}/2)^2$. We also show with easy examples\\nthat the groups $\\\\mathbb{Z}/2, \\\\mathbb{Z}/3$ do effectively occur. Respectively, in the case where $Aut_{\\\\mathbb{Z}}(S)$ is infinite, we give\\nthe sharp upper bound 2 for the number of its connected components.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这第一部分中,我们描述了在初始情况 $\chi(\mathcal{O}_S) =0$ 下,适当椭圆曲面(柯达伊拉维度为 $\kappa(S)=1$ 的最小曲面 $S$)的同调琐细自形群 $Aut_{\mathbb{Z}}(S)$。特别是在 $Aut_{\mathbb{Z}}(S)$ 是有限的情况下,我们给出了它的心数的上界 4,更精确地表明如果 $Aut_{\mathbb{Z}}(S)$ 是非微观的,它就是下列群之一:$\mathbb{Z}/2, \mathbb{Z}/3, (\mathbb{Z}/2)^2$。我们还用简单的例子证明,$\mathbb{Z}/2, \mathbb{Z}/3$这两个群确实有效地存在。同样,在 $Aut_{\mathbb{Z}}(S)$ 是无限的情况下,我们给出了其连通成分数的尖锐上界 2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the cohomologically trivial automorphisms of elliptic surfaces I: $χ(S)=0$
In this first part we describe the group $Aut_{\mathbb{Z}}(S)$ of cohomologically trivial automorphisms of a properly elliptic surface (a minimal surface $S$ with Kodaira dimension $\kappa(S)=1$), in the initial case $ \chi(\mathcal{O}_S) =0$. In particular, in the case where $Aut_{\mathbb{Z}}(S)$ is finite, we give the upper bound 4 for its cardinality, showing more precisely that if $Aut_{\mathbb{Z}}(S)$ is nontrivial, it is one of the following groups: $\mathbb{Z}/2, \mathbb{Z}/3, (\mathbb{Z}/2)^2$. We also show with easy examples that the groups $\mathbb{Z}/2, \mathbb{Z}/3$ do effectively occur. Respectively, in the case where $Aut_{\mathbb{Z}}(S)$ is infinite, we give the sharp upper bound 2 for the number of its connected components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信