普遍覆盖图的边界行为

Gustavo R. Ferreira, Anna Jové
{"title":"普遍覆盖图的边界行为","authors":"Gustavo R. Ferreira, Anna Jové","doi":"arxiv-2409.01070","DOIUrl":null,"url":null,"abstract":"Let $\\Omega \\subset\\widehat{\\mathbb{C}}$ be a multiply connected domain, and\nlet $\\pi\\colon \\mathbb{D}\\to\\Omega$ be a universal covering map. In this paper,\nwe analyze the boundary behaviour of $\\pi$, describing the interplay between\nradial limits and angular cluster sets, the tangential and non-tangential limit\nsets of the deck transformation group, and the geometry and the topology of the\nboundary of $\\Omega$. As an application, we describe accesses to the boundary of $\\Omega$ in terms\nof radial limits of points in the unit circle, establishing a correspondence in\nthe same spirit as in the simply connected case. We also develop a theory of\nprime ends for multiply connected domains which behaves properly under the\nuniversal covering, providing an extension of the Carath\\'eodory--Torhorst\nTheorem to multiply connected domains.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundary behaviour of universal covering maps\",\"authors\":\"Gustavo R. Ferreira, Anna Jové\",\"doi\":\"arxiv-2409.01070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\Omega \\\\subset\\\\widehat{\\\\mathbb{C}}$ be a multiply connected domain, and\\nlet $\\\\pi\\\\colon \\\\mathbb{D}\\\\to\\\\Omega$ be a universal covering map. In this paper,\\nwe analyze the boundary behaviour of $\\\\pi$, describing the interplay between\\nradial limits and angular cluster sets, the tangential and non-tangential limit\\nsets of the deck transformation group, and the geometry and the topology of the\\nboundary of $\\\\Omega$. As an application, we describe accesses to the boundary of $\\\\Omega$ in terms\\nof radial limits of points in the unit circle, establishing a correspondence in\\nthe same spirit as in the simply connected case. We also develop a theory of\\nprime ends for multiply connected domains which behaves properly under the\\nuniversal covering, providing an extension of the Carath\\\\'eodory--Torhorst\\nTheorem to multiply connected domains.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $\Omega \subset\widehat\{mathbb{C}}$ 是一个多连域,让 $\pi\colon \mathbb{D}\to\Omega$ 是一个普遍覆盖映射。在本文中,我们分析了 $\pi$ 的边界行为,描述了径向极限与角簇集、甲板变换组的切向与非切向极限集以及 $\Omega$ 边界的几何与拓扑之间的相互作用。作为应用,我们用单位圆中点的径向极限来描述对 $\Omega$ 边界的访问,建立了与简单连接情况相同的对应关系。我们还为多连通域发展了一种在普遍覆盖下表现适当的prime ends理论,提供了Carath\'eodory--TorhorstTheorem 对多连通域的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundary behaviour of universal covering maps
Let $\Omega \subset\widehat{\mathbb{C}}$ be a multiply connected domain, and let $\pi\colon \mathbb{D}\to\Omega$ be a universal covering map. In this paper, we analyze the boundary behaviour of $\pi$, describing the interplay between radial limits and angular cluster sets, the tangential and non-tangential limit sets of the deck transformation group, and the geometry and the topology of the boundary of $\Omega$. As an application, we describe accesses to the boundary of $\Omega$ in terms of radial limits of points in the unit circle, establishing a correspondence in the same spirit as in the simply connected case. We also develop a theory of prime ends for multiply connected domains which behaves properly under the universal covering, providing an extension of the Carath\'eodory--Torhorst Theorem to multiply connected domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信