沿复解析变体的全形 1 形的布鲁斯-罗伯茨数

Pedro Barbosa, Arturo Fernández-Pérez, Víctor León
{"title":"沿复解析变体的全形 1 形的布鲁斯-罗伯茨数","authors":"Pedro Barbosa, Arturo Fernández-Pérez, Víctor León","doi":"arxiv-2409.01237","DOIUrl":null,"url":null,"abstract":"We introduce the notion of the \\textit{Bruce-Roberts number} for holomorphic\n1-forms relative to complex analytic varieties. Our main result shows that the\nBruce-Roberts number of a 1-form $\\omega$ with respect to a complex analytic\nhypersurface $X$ with an isolated singularity can be expressed in terms of the\n\\textit{Ebeling--Gusein-Zade index} of $\\omega$ along $X$, the \\textit{Milnor\nnumber} of $\\omega$ and the \\textit{Tjurina number} of $X$. This result allows\nus to recover known formulas for the Bruce-Roberts number of a holomorphic\nfunction along $X$ and to establish connections between this number, the radial\nindex, and the local Euler obstruction of $\\omega$ along $X$. Moreover, we\npresent applications to both global and local holomorphic foliations in complex\ndimension two.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Bruce-Roberts number of holomorphic 1-forms along complex analytic varieties\",\"authors\":\"Pedro Barbosa, Arturo Fernández-Pérez, Víctor León\",\"doi\":\"arxiv-2409.01237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the notion of the \\\\textit{Bruce-Roberts number} for holomorphic\\n1-forms relative to complex analytic varieties. Our main result shows that the\\nBruce-Roberts number of a 1-form $\\\\omega$ with respect to a complex analytic\\nhypersurface $X$ with an isolated singularity can be expressed in terms of the\\n\\\\textit{Ebeling--Gusein-Zade index} of $\\\\omega$ along $X$, the \\\\textit{Milnor\\nnumber} of $\\\\omega$ and the \\\\textit{Tjurina number} of $X$. This result allows\\nus to recover known formulas for the Bruce-Roberts number of a holomorphic\\nfunction along $X$ and to establish connections between this number, the radial\\nindex, and the local Euler obstruction of $\\\\omega$ along $X$. Moreover, we\\npresent applications to both global and local holomorphic foliations in complex\\ndimension two.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了相对于复解析曲面的全形1-形式的布鲁斯-罗伯茨数(textit{Bruce-Roberts number})的概念。我们的主要结果表明,1-形式 $\omega$ 相对于具有孤立奇点的复解析曲面 $X$ 的布鲁斯-罗伯茨数可以用 $\omega$ 沿 $X$ 的文本{Ebeling--Gusein-Zade 索引}、$\omega$ 的文本{Milnornumber}和 $X$ 的文本{Tjurina数}来表示。这一结果使我们能够恢复全形函数沿$X$的布鲁斯-罗伯茨数的已知公式,并在该数、径向指数和$\omega$沿$X$的局部欧拉阻塞之间建立联系。此外,我们还介绍了在复维度二中全局和局部全形叶形的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Bruce-Roberts number of holomorphic 1-forms along complex analytic varieties
We introduce the notion of the \textit{Bruce-Roberts number} for holomorphic 1-forms relative to complex analytic varieties. Our main result shows that the Bruce-Roberts number of a 1-form $\omega$ with respect to a complex analytic hypersurface $X$ with an isolated singularity can be expressed in terms of the \textit{Ebeling--Gusein-Zade index} of $\omega$ along $X$, the \textit{Milnor number} of $\omega$ and the \textit{Tjurina number} of $X$. This result allows us to recover known formulas for the Bruce-Roberts number of a holomorphic function along $X$ and to establish connections between this number, the radial index, and the local Euler obstruction of $\omega$ along $X$. Moreover, we present applications to both global and local holomorphic foliations in complex dimension two.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信