韦尔微积分视角在有界域离散八离子分析中的应用

Rolf Sören Kraußhar, Anastasiia Legatiuk, Dmitrii Legatiuk
{"title":"韦尔微积分视角在有界域离散八离子分析中的应用","authors":"Rolf Sören Kraußhar, Anastasiia Legatiuk, Dmitrii Legatiuk","doi":"arxiv-2409.04285","DOIUrl":null,"url":null,"abstract":"In this paper, we finish the basic development of the discrete octonionic\nanalysis by presenting a Weyl calculus-based approach to bounded domains in\n$\\mathbb{R}^{8}$. In particular, we explicitly prove the discrete Stokes\nformula for a bounded cuboid, and then we generalise this result to arbitrary\nbounded domains in interior and exterior settings by the help of characteristic\nfunctions. After that, discrete interior and exterior Borel-Pompeiu and Cauchy\nformulae are introduced. Finally, we recall the construction of discrete\noctonionic Hardy spaces for bounded domains. Moreover, we explicitly explain\nwhere the non-associativity of octonionic multiplication is essential and where\nit is not. Thus, this paper completes the basic framework of the discrete\noctonionic analysis introduced in previous papers, and, hence, provides a solid\nfoundation for further studies in this field.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of the Weyl calculus perspective on discrete octonionic analysis in bounded domains\",\"authors\":\"Rolf Sören Kraußhar, Anastasiia Legatiuk, Dmitrii Legatiuk\",\"doi\":\"arxiv-2409.04285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we finish the basic development of the discrete octonionic\\nanalysis by presenting a Weyl calculus-based approach to bounded domains in\\n$\\\\mathbb{R}^{8}$. In particular, we explicitly prove the discrete Stokes\\nformula for a bounded cuboid, and then we generalise this result to arbitrary\\nbounded domains in interior and exterior settings by the help of characteristic\\nfunctions. After that, discrete interior and exterior Borel-Pompeiu and Cauchy\\nformulae are introduced. Finally, we recall the construction of discrete\\noctonionic Hardy spaces for bounded domains. Moreover, we explicitly explain\\nwhere the non-associativity of octonionic multiplication is essential and where\\nit is not. Thus, this paper completes the basic framework of the discrete\\noctonionic analysis introduced in previous papers, and, hence, provides a solid\\nfoundation for further studies in this field.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种基于韦尔微积分的方法来研究$\mathbb{R}^{8}$中的有界域,从而完成了离散八分分析的基本发展。特别是,我们明确证明了有界立方体的离散斯托克斯公式,然后借助特征函数将这一结果推广到内部和外部的任意有界域。之后,我们介绍了离散内部和外部 Borel-Pompeiu 公式和 Cauchy 公式。最后,我们回顾了有界域离散八音度 Hardy 空间的构造。此外,我们明确解释了八离子乘法的非偶性在哪些地方是必要的,在哪些地方是不必要的。因此,本文完善了前几篇论文中介绍的离散八离子分析的基本框架,从而为这一领域的进一步研究提供了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of the Weyl calculus perspective on discrete octonionic analysis in bounded domains
In this paper, we finish the basic development of the discrete octonionic analysis by presenting a Weyl calculus-based approach to bounded domains in $\mathbb{R}^{8}$. In particular, we explicitly prove the discrete Stokes formula for a bounded cuboid, and then we generalise this result to arbitrary bounded domains in interior and exterior settings by the help of characteristic functions. After that, discrete interior and exterior Borel-Pompeiu and Cauchy formulae are introduced. Finally, we recall the construction of discrete octonionic Hardy spaces for bounded domains. Moreover, we explicitly explain where the non-associativity of octonionic multiplication is essential and where it is not. Thus, this paper completes the basic framework of the discrete octonionic analysis introduced in previous papers, and, hence, provides a solid foundation for further studies in this field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信