{"title":"无穷维的比伯巴赫猜想、玻尔半径、布洛赫常数和亚历山大定理","authors":"Hidetaka Hamada, Gabriela Kohr, Mirela Kohr","doi":"arxiv-2409.04028","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate holomorphic mappings $F$ on the unit ball\n$\\mathbb{B}$ of a complex Banach space of the form $F(x)=f(x)x$, where $f$ is a\nholomorphic function on $\\mathbb{B}$. First, we investigate criteria for\nunivalence, starlikeness and quasi-convexity of type $B$ on $\\mathbb{B}$. Next,\nwe investigate a generalized Bieberbach conjecture, a covering theorem and a\ndistortion theorem, the Fekete-Szeg\\\"{o} inequality, lower bound for the Bloch\nconstant, and Alexander's type theorem for such mappings.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bieberbach conjecture, Bohr radius, Bloch constant and Alexander's theorem in infinite dimensions\",\"authors\":\"Hidetaka Hamada, Gabriela Kohr, Mirela Kohr\",\"doi\":\"arxiv-2409.04028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate holomorphic mappings $F$ on the unit ball\\n$\\\\mathbb{B}$ of a complex Banach space of the form $F(x)=f(x)x$, where $f$ is a\\nholomorphic function on $\\\\mathbb{B}$. First, we investigate criteria for\\nunivalence, starlikeness and quasi-convexity of type $B$ on $\\\\mathbb{B}$. Next,\\nwe investigate a generalized Bieberbach conjecture, a covering theorem and a\\ndistortion theorem, the Fekete-Szeg\\\\\\\"{o} inequality, lower bound for the Bloch\\nconstant, and Alexander's type theorem for such mappings.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bieberbach conjecture, Bohr radius, Bloch constant and Alexander's theorem in infinite dimensions
In this paper, we investigate holomorphic mappings $F$ on the unit ball
$\mathbb{B}$ of a complex Banach space of the form $F(x)=f(x)x$, where $f$ is a
holomorphic function on $\mathbb{B}$. First, we investigate criteria for
univalence, starlikeness and quasi-convexity of type $B$ on $\mathbb{B}$. Next,
we investigate a generalized Bieberbach conjecture, a covering theorem and a
distortion theorem, the Fekete-Szeg\"{o} inequality, lower bound for the Bloch
constant, and Alexander's type theorem for such mappings.