紧凑复流形上平非琐线束的均匀 L^2$ 估计值

Yoshinori Hashimoto, Takayuki Koike, Shin-ichi Matsumura
{"title":"紧凑复流形上平非琐线束的均匀 L^2$ 估计值","authors":"Yoshinori Hashimoto, Takayuki Koike, Shin-ichi Matsumura","doi":"arxiv-2409.05300","DOIUrl":null,"url":null,"abstract":"In this paper, we extend the uniform $L^2$-estimate of\n$\\bar{\\partial}$-equations for flat nontrivial line bundles, proved for compact\nK\\\"ahler manifolds in the previous work, to compact complex manifolds. In the\nproof, by tracing the Dolbeault isomorphism in detail, we derive the desired\n$L^2$-estimate directly from Ueda's lemma.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniform $L^2$-estimates for flat nontrivial line bundles on compact complex manifolds\",\"authors\":\"Yoshinori Hashimoto, Takayuki Koike, Shin-ichi Matsumura\",\"doi\":\"arxiv-2409.05300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we extend the uniform $L^2$-estimate of\\n$\\\\bar{\\\\partial}$-equations for flat nontrivial line bundles, proved for compact\\nK\\\\\\\"ahler manifolds in the previous work, to compact complex manifolds. In the\\nproof, by tracing the Dolbeault isomorphism in detail, we derive the desired\\n$L^2$-estimate directly from Ueda's lemma.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将前人在紧凑K "ahler流形中证明的关于平坦非难线束的$bar{/partial}$方程的统一$L^2$估计值推广到紧凑复流形中。在证明中,通过详细追踪多尔贝同构,我们直接从上田定理推导出了所需的$L^2$估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniform $L^2$-estimates for flat nontrivial line bundles on compact complex manifolds
In this paper, we extend the uniform $L^2$-estimate of $\bar{\partial}$-equations for flat nontrivial line bundles, proved for compact K\"ahler manifolds in the previous work, to compact complex manifolds. In the proof, by tracing the Dolbeault isomorphism in detail, we derive the desired $L^2$-estimate directly from Ueda's lemma.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信