列维方程和局部最大值特性

Giuseppe Della Sala, Giuseppe Tomassini
{"title":"列维方程和局部最大值特性","authors":"Giuseppe Della Sala, Giuseppe Tomassini","doi":"arxiv-2409.05776","DOIUrl":null,"url":null,"abstract":"The aim of the paper is to study the level sets of the solutions of Dirichlet\nproblems for the Levi operator on strongly pseudoconvex domains $\\Omega$ in\n$\\mathbb C^2$. Such solutions are generically non smooth, and the geometric\nproperties of their level sets are characterized by means of hulls of their\nintersections with $b\\Omega$, using as main tool the local maximum property\nintroduced by Slodkowski (PJM, 1988). The same techniques are then employed to\nstudy the behavior of the complete Levi operator for graphs in $\\mathbb C^2$.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Levi equation and local maximum property\",\"authors\":\"Giuseppe Della Sala, Giuseppe Tomassini\",\"doi\":\"arxiv-2409.05776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the paper is to study the level sets of the solutions of Dirichlet\\nproblems for the Levi operator on strongly pseudoconvex domains $\\\\Omega$ in\\n$\\\\mathbb C^2$. Such solutions are generically non smooth, and the geometric\\nproperties of their level sets are characterized by means of hulls of their\\nintersections with $b\\\\Omega$, using as main tool the local maximum property\\nintroduced by Slodkowski (PJM, 1988). The same techniques are then employed to\\nstudy the behavior of the complete Levi operator for graphs in $\\\\mathbb C^2$.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在研究在$\mathbb C^2$中强伪凸域$\Omega$上的列维算子的迪里赫特问题解的水平集。这些解一般都是非光滑的,它们的水平集的几何性质是通过它们与 $b\Omega$ 的交点的船体来描述的,主要工具是 Slodkowski 提出的局部最大值性质(PJM,1988 年)。然后使用同样的技术来研究 $\mathbb C^2$ 中图形的完整列维算子的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Levi equation and local maximum property
The aim of the paper is to study the level sets of the solutions of Dirichlet problems for the Levi operator on strongly pseudoconvex domains $\Omega$ in $\mathbb C^2$. Such solutions are generically non smooth, and the geometric properties of their level sets are characterized by means of hulls of their intersections with $b\Omega$, using as main tool the local maximum property introduced by Slodkowski (PJM, 1988). The same techniques are then employed to study the behavior of the complete Levi operator for graphs in $\mathbb C^2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信