{"title":"基于质数的多步测量法分离圆度误差","authors":"Tsung-Han Hsieh, Ming-Xian Lin","doi":"10.1177/09544062241270507","DOIUrl":null,"url":null,"abstract":"Roundness measurement is critical in manufacturing, as it ensures that products conform to precise design specifications. However, traditional multistep measurements for roundness error separation are time-consuming and limited in their ability to separate specific Fourier components. In this study, we propose a novel combined multistep measurement method with prime numbers that overcomes these limitations. We demonstrate this method through three experimental cases, achieving high levels of Fourier components in error separation with a limited number of measurements. Our method combines two ( p and q) or three ( p, q, and r) steps of prime numbers to achieve high levels of Fourier components for error separation, compared to traditional multistep measurements that require more steps. In the first experimental case, we use a 2-step and 5-step measurement to achieve traditional multistep measurement in ten steps. In the second case, we use 3-step and 5-step measurements, and in the third, we combine the 2-step, 3-step, and 5-step measurements. We achieve roundness deviations (RONt) of 12.7, 7.8, and 9.9 nm, respectively, and maximum En-values of 0.8, 0.8, and 0.7, respectively. Our proposed combined multistep measurement method using prime numbers has practical applications in manufacturing, as it reduces the time and resources required for roundness error separation while achieving a higher level of Fourier components. Our results demonstrate the effectiveness of our method and its potential to revolutionize roundness measurement in industry.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prime number-based multistep measurement for separation of roundness errors\",\"authors\":\"Tsung-Han Hsieh, Ming-Xian Lin\",\"doi\":\"10.1177/09544062241270507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Roundness measurement is critical in manufacturing, as it ensures that products conform to precise design specifications. However, traditional multistep measurements for roundness error separation are time-consuming and limited in their ability to separate specific Fourier components. In this study, we propose a novel combined multistep measurement method with prime numbers that overcomes these limitations. We demonstrate this method through three experimental cases, achieving high levels of Fourier components in error separation with a limited number of measurements. Our method combines two ( p and q) or three ( p, q, and r) steps of prime numbers to achieve high levels of Fourier components for error separation, compared to traditional multistep measurements that require more steps. In the first experimental case, we use a 2-step and 5-step measurement to achieve traditional multistep measurement in ten steps. In the second case, we use 3-step and 5-step measurements, and in the third, we combine the 2-step, 3-step, and 5-step measurements. We achieve roundness deviations (RONt) of 12.7, 7.8, and 9.9 nm, respectively, and maximum En-values of 0.8, 0.8, and 0.7, respectively. Our proposed combined multistep measurement method using prime numbers has practical applications in manufacturing, as it reduces the time and resources required for roundness error separation while achieving a higher level of Fourier components. Our results demonstrate the effectiveness of our method and its potential to revolutionize roundness measurement in industry.\",\"PeriodicalId\":20558,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544062241270507\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544062241270507","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Prime number-based multistep measurement for separation of roundness errors
Roundness measurement is critical in manufacturing, as it ensures that products conform to precise design specifications. However, traditional multistep measurements for roundness error separation are time-consuming and limited in their ability to separate specific Fourier components. In this study, we propose a novel combined multistep measurement method with prime numbers that overcomes these limitations. We demonstrate this method through three experimental cases, achieving high levels of Fourier components in error separation with a limited number of measurements. Our method combines two ( p and q) or three ( p, q, and r) steps of prime numbers to achieve high levels of Fourier components for error separation, compared to traditional multistep measurements that require more steps. In the first experimental case, we use a 2-step and 5-step measurement to achieve traditional multistep measurement in ten steps. In the second case, we use 3-step and 5-step measurements, and in the third, we combine the 2-step, 3-step, and 5-step measurements. We achieve roundness deviations (RONt) of 12.7, 7.8, and 9.9 nm, respectively, and maximum En-values of 0.8, 0.8, and 0.7, respectively. Our proposed combined multistep measurement method using prime numbers has practical applications in manufacturing, as it reduces the time and resources required for roundness error separation while achieving a higher level of Fourier components. Our results demonstrate the effectiveness of our method and its potential to revolutionize roundness measurement in industry.
期刊介绍:
The Journal of Mechanical Engineering Science advances the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in engineering.