Noelia Bazarra, José R Fernández, Ramón Quintanilla
{"title":"具有第二梯度的摩尔-吉布森-汤普森热传导问题","authors":"Noelia Bazarra, José R Fernández, Ramón Quintanilla","doi":"10.1177/10812865241266992","DOIUrl":null,"url":null,"abstract":"In this work, we study, from both analytical and numerical points of view, a heat conduction model which is based on the Moore-Gibson-Thompson equation. The second gradient effects are also included. First, the existence of a unique solution is proved by using the theory of linear semigroups, and the exponential energy decay is also shown when the constitutive tensors are homogeneous. The analyticity of the semigroup is also discussed in the isotropic case, and its spatial behavior is studied. The spatial exponential decay is also proved. Then, we provide the numerical analysis of a fully discrete approximation obtained by using the finite element method and an implicit Euler scheme. A discrete stability property is shown, and some a priori error estimates are derived, from which the linear convergence is concluded under suitable regularity conditions. Finally, some one-dimensional numerical simulations are presented to demonstrate the accuracy of the approximations and the behavior of the discrete energy.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"41 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Moore-Gibson-Thompson heat conduction problem with second gradient\",\"authors\":\"Noelia Bazarra, José R Fernández, Ramón Quintanilla\",\"doi\":\"10.1177/10812865241266992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study, from both analytical and numerical points of view, a heat conduction model which is based on the Moore-Gibson-Thompson equation. The second gradient effects are also included. First, the existence of a unique solution is proved by using the theory of linear semigroups, and the exponential energy decay is also shown when the constitutive tensors are homogeneous. The analyticity of the semigroup is also discussed in the isotropic case, and its spatial behavior is studied. The spatial exponential decay is also proved. Then, we provide the numerical analysis of a fully discrete approximation obtained by using the finite element method and an implicit Euler scheme. A discrete stability property is shown, and some a priori error estimates are derived, from which the linear convergence is concluded under suitable regularity conditions. Finally, some one-dimensional numerical simulations are presented to demonstrate the accuracy of the approximations and the behavior of the discrete energy.\",\"PeriodicalId\":49854,\"journal\":{\"name\":\"Mathematics and Mechanics of Solids\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Mechanics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10812865241266992\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10812865241266992","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A Moore-Gibson-Thompson heat conduction problem with second gradient
In this work, we study, from both analytical and numerical points of view, a heat conduction model which is based on the Moore-Gibson-Thompson equation. The second gradient effects are also included. First, the existence of a unique solution is proved by using the theory of linear semigroups, and the exponential energy decay is also shown when the constitutive tensors are homogeneous. The analyticity of the semigroup is also discussed in the isotropic case, and its spatial behavior is studied. The spatial exponential decay is also proved. Then, we provide the numerical analysis of a fully discrete approximation obtained by using the finite element method and an implicit Euler scheme. A discrete stability property is shown, and some a priori error estimates are derived, from which the linear convergence is concluded under suitable regularity conditions. Finally, some one-dimensional numerical simulations are presented to demonstrate the accuracy of the approximations and the behavior of the discrete energy.
期刊介绍:
Mathematics and Mechanics of Solids is an international peer-reviewed journal that publishes the highest quality original innovative research in solid mechanics and materials science.
The central aim of MMS is to publish original, well-written and self-contained research that elucidates the mechanical behaviour of solids with particular emphasis on mathematical principles. This journal is a member of the Committee on Publication Ethics (COPE).