解决长记忆粘弹性接触问题的虚拟元素法

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wenqiang Xiao, Min Ling
{"title":"解决长记忆粘弹性接触问题的虚拟元素法","authors":"Wenqiang Xiao, Min Ling","doi":"10.1177/10812865241263039","DOIUrl":null,"url":null,"abstract":"In this paper, we use the virtual element method to solve a history-dependent hemivariational inequality arising in contact problems. The contact problem concerns the deformation of a viscoelastic body with long memory, subjected to a contact condition with non-monotone normal compliance and unilateral constraints. A fully discrete scheme based on the trapezoidal rule for the discretization of the time integration and the virtual element method for the spatial discretization are analyzed. We provide a unified priori error analysis for both internal and external approximations. For the linear virtual element method, we obtain the optimal order error estimate. Finally, three numerical examples are reported, providing numerical evidence of the theoretically predicted optimal convergence orders.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"14 4 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Virtual element method for solving a viscoelastic contact problem with long memory\",\"authors\":\"Wenqiang Xiao, Min Ling\",\"doi\":\"10.1177/10812865241263039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we use the virtual element method to solve a history-dependent hemivariational inequality arising in contact problems. The contact problem concerns the deformation of a viscoelastic body with long memory, subjected to a contact condition with non-monotone normal compliance and unilateral constraints. A fully discrete scheme based on the trapezoidal rule for the discretization of the time integration and the virtual element method for the spatial discretization are analyzed. We provide a unified priori error analysis for both internal and external approximations. For the linear virtual element method, we obtain the optimal order error estimate. Finally, three numerical examples are reported, providing numerical evidence of the theoretically predicted optimal convergence orders.\",\"PeriodicalId\":49854,\"journal\":{\"name\":\"Mathematics and Mechanics of Solids\",\"volume\":\"14 4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Mechanics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10812865241263039\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10812865241263039","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们使用虚拟元素法解决了接触问题中出现的与历史相关的半变量不等式。接触问题涉及具有长记忆的粘弹性体在非单调法向顺应性和单边约束的接触条件下的变形。我们分析了基于梯形法则的时间积分离散化完全离散方案和用于空间离散化的虚拟元素法。我们为内部和外部近似提供了统一的先验误差分析。对于线性虚拟元素法,我们获得了最优阶误差估计。最后,报告了三个数值示例,为理论预测的最佳收敛阶数提供了数值证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Virtual element method for solving a viscoelastic contact problem with long memory
In this paper, we use the virtual element method to solve a history-dependent hemivariational inequality arising in contact problems. The contact problem concerns the deformation of a viscoelastic body with long memory, subjected to a contact condition with non-monotone normal compliance and unilateral constraints. A fully discrete scheme based on the trapezoidal rule for the discretization of the time integration and the virtual element method for the spatial discretization are analyzed. We provide a unified priori error analysis for both internal and external approximations. For the linear virtual element method, we obtain the optimal order error estimate. Finally, three numerical examples are reported, providing numerical evidence of the theoretically predicted optimal convergence orders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics and Mechanics of Solids
Mathematics and Mechanics of Solids 工程技术-材料科学:综合
CiteScore
4.80
自引率
19.20%
发文量
159
审稿时长
1 months
期刊介绍: Mathematics and Mechanics of Solids is an international peer-reviewed journal that publishes the highest quality original innovative research in solid mechanics and materials science. The central aim of MMS is to publish original, well-written and self-contained research that elucidates the mechanical behaviour of solids with particular emphasis on mathematical principles. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信