{"title":"解决长记忆粘弹性接触问题的虚拟元素法","authors":"Wenqiang Xiao, Min Ling","doi":"10.1177/10812865241263039","DOIUrl":null,"url":null,"abstract":"In this paper, we use the virtual element method to solve a history-dependent hemivariational inequality arising in contact problems. The contact problem concerns the deformation of a viscoelastic body with long memory, subjected to a contact condition with non-monotone normal compliance and unilateral constraints. A fully discrete scheme based on the trapezoidal rule for the discretization of the time integration and the virtual element method for the spatial discretization are analyzed. We provide a unified priori error analysis for both internal and external approximations. For the linear virtual element method, we obtain the optimal order error estimate. Finally, three numerical examples are reported, providing numerical evidence of the theoretically predicted optimal convergence orders.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"14 4 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Virtual element method for solving a viscoelastic contact problem with long memory\",\"authors\":\"Wenqiang Xiao, Min Ling\",\"doi\":\"10.1177/10812865241263039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we use the virtual element method to solve a history-dependent hemivariational inequality arising in contact problems. The contact problem concerns the deformation of a viscoelastic body with long memory, subjected to a contact condition with non-monotone normal compliance and unilateral constraints. A fully discrete scheme based on the trapezoidal rule for the discretization of the time integration and the virtual element method for the spatial discretization are analyzed. We provide a unified priori error analysis for both internal and external approximations. For the linear virtual element method, we obtain the optimal order error estimate. Finally, three numerical examples are reported, providing numerical evidence of the theoretically predicted optimal convergence orders.\",\"PeriodicalId\":49854,\"journal\":{\"name\":\"Mathematics and Mechanics of Solids\",\"volume\":\"14 4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Mechanics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10812865241263039\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10812865241263039","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Virtual element method for solving a viscoelastic contact problem with long memory
In this paper, we use the virtual element method to solve a history-dependent hemivariational inequality arising in contact problems. The contact problem concerns the deformation of a viscoelastic body with long memory, subjected to a contact condition with non-monotone normal compliance and unilateral constraints. A fully discrete scheme based on the trapezoidal rule for the discretization of the time integration and the virtual element method for the spatial discretization are analyzed. We provide a unified priori error analysis for both internal and external approximations. For the linear virtual element method, we obtain the optimal order error estimate. Finally, three numerical examples are reported, providing numerical evidence of the theoretically predicted optimal convergence orders.
期刊介绍:
Mathematics and Mechanics of Solids is an international peer-reviewed journal that publishes the highest quality original innovative research in solid mechanics and materials science.
The central aim of MMS is to publish original, well-written and self-contained research that elucidates the mechanical behaviour of solids with particular emphasis on mathematical principles. This journal is a member of the Committee on Publication Ethics (COPE).