{"title":"论具有全阻抗边界条件的瑞利波的存在性","authors":"Pham Thi Ha Giang, Pham Chi Vinh","doi":"10.1177/10812865241266809","DOIUrl":null,"url":null,"abstract":"The existence of Rayleigh waves (propagating in isotropic elastic half-spaces) with the tangential and normal impedance boundary conditions was investigated. It has been shown that for the tangential impedance boundary condition (TIBC), there always exists a unique Rayleigh wave, while for the normal impedance boundary condition (NIBC), there exists a domain (of impedance and material parameters) in which exactly one Rayleigh wave is possible and outside this domain a Rayleigh wave is impossible. In this paper, we consider the existence of Rayleigh waves with the full impedance boundary condition (FIBC) that contains both TIBC and NIBC. It is shown that the existence picture of Rayleigh waves for this general case is more complicated. It contains domain for which exactly one Rayleigh wave exists, domain where a Rayleigh wave is impossible, and domain for which all three possibilities may occur: two Rayleigh waves exist, one Rayleigh wave exists, and no Rayleigh wave exists at all. The obtained existence results recover the existence results established previously for the cases of TIBC and NIBC. The formulas for the Rayleigh wave velocity are derived. As these formulas are totally explicit, they are very useful in various practical applications, especially in the non-destructive evaluation of the mechanical properties of structures. In order to establish the existence results and derive formulas for the Rayleigh wave velocity, the complex function method, which is based on the Cauchy-type integrals, is employed.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the existence of Rayleigh waves with full impedance boundary condition\",\"authors\":\"Pham Thi Ha Giang, Pham Chi Vinh\",\"doi\":\"10.1177/10812865241266809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existence of Rayleigh waves (propagating in isotropic elastic half-spaces) with the tangential and normal impedance boundary conditions was investigated. It has been shown that for the tangential impedance boundary condition (TIBC), there always exists a unique Rayleigh wave, while for the normal impedance boundary condition (NIBC), there exists a domain (of impedance and material parameters) in which exactly one Rayleigh wave is possible and outside this domain a Rayleigh wave is impossible. In this paper, we consider the existence of Rayleigh waves with the full impedance boundary condition (FIBC) that contains both TIBC and NIBC. It is shown that the existence picture of Rayleigh waves for this general case is more complicated. It contains domain for which exactly one Rayleigh wave exists, domain where a Rayleigh wave is impossible, and domain for which all three possibilities may occur: two Rayleigh waves exist, one Rayleigh wave exists, and no Rayleigh wave exists at all. The obtained existence results recover the existence results established previously for the cases of TIBC and NIBC. The formulas for the Rayleigh wave velocity are derived. As these formulas are totally explicit, they are very useful in various practical applications, especially in the non-destructive evaluation of the mechanical properties of structures. In order to establish the existence results and derive formulas for the Rayleigh wave velocity, the complex function method, which is based on the Cauchy-type integrals, is employed.\",\"PeriodicalId\":49854,\"journal\":{\"name\":\"Mathematics and Mechanics of Solids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Mechanics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10812865241266809\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10812865241266809","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
On the existence of Rayleigh waves with full impedance boundary condition
The existence of Rayleigh waves (propagating in isotropic elastic half-spaces) with the tangential and normal impedance boundary conditions was investigated. It has been shown that for the tangential impedance boundary condition (TIBC), there always exists a unique Rayleigh wave, while for the normal impedance boundary condition (NIBC), there exists a domain (of impedance and material parameters) in which exactly one Rayleigh wave is possible and outside this domain a Rayleigh wave is impossible. In this paper, we consider the existence of Rayleigh waves with the full impedance boundary condition (FIBC) that contains both TIBC and NIBC. It is shown that the existence picture of Rayleigh waves for this general case is more complicated. It contains domain for which exactly one Rayleigh wave exists, domain where a Rayleigh wave is impossible, and domain for which all three possibilities may occur: two Rayleigh waves exist, one Rayleigh wave exists, and no Rayleigh wave exists at all. The obtained existence results recover the existence results established previously for the cases of TIBC and NIBC. The formulas for the Rayleigh wave velocity are derived. As these formulas are totally explicit, they are very useful in various practical applications, especially in the non-destructive evaluation of the mechanical properties of structures. In order to establish the existence results and derive formulas for the Rayleigh wave velocity, the complex function method, which is based on the Cauchy-type integrals, is employed.
期刊介绍:
Mathematics and Mechanics of Solids is an international peer-reviewed journal that publishes the highest quality original innovative research in solid mechanics and materials science.
The central aim of MMS is to publish original, well-written and self-contained research that elucidates the mechanical behaviour of solids with particular emphasis on mathematical principles. This journal is a member of the Committee on Publication Ethics (COPE).