对 M. Oore 和 S. Oore 的 "无限弹性板中椭圆孔的直角坐标显式解法 "的评论

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Milan Batista
{"title":"对 M. Oore 和 S. Oore 的 \"无限弹性板中椭圆孔的直角坐标显式解法 \"的评论","authors":"Milan Batista","doi":"10.1177/10812865241276440","DOIUrl":null,"url":null,"abstract":"This comment discusses the derivation procedure of stress distribution formulas for an infinite elastic plate with an elliptic hole under uniform tension, as presented by M. Oore and S. Oore. While the authors use a heuristic three-step procedure, it is shown that these derivations can be simplified using Maple 2023 or manually. This confirms the exactness of the authors’ formulas, asserting their role as definitive closed-form solutions.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"13 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comment on “Explicit solutions in Cartesian coordinates for an elliptic hole in an infinite elastic plate” by M. Oore and S. Oore\",\"authors\":\"Milan Batista\",\"doi\":\"10.1177/10812865241276440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This comment discusses the derivation procedure of stress distribution formulas for an infinite elastic plate with an elliptic hole under uniform tension, as presented by M. Oore and S. Oore. While the authors use a heuristic three-step procedure, it is shown that these derivations can be simplified using Maple 2023 or manually. This confirms the exactness of the authors’ formulas, asserting their role as definitive closed-form solutions.\",\"PeriodicalId\":49854,\"journal\":{\"name\":\"Mathematics and Mechanics of Solids\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Mechanics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10812865241276440\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10812865241276440","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本评论讨论了 M. Oore 和 S. Oore 提出的均匀拉伸下带椭圆孔的无限弹性板应力分布公式的推导过程。虽然作者使用了启发式的三步程序,但研究表明,这些推导可以使用 Maple 2023 或手动进行简化。这证实了作者公式的精确性,使其成为明确的闭式解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comment on “Explicit solutions in Cartesian coordinates for an elliptic hole in an infinite elastic plate” by M. Oore and S. Oore
This comment discusses the derivation procedure of stress distribution formulas for an infinite elastic plate with an elliptic hole under uniform tension, as presented by M. Oore and S. Oore. While the authors use a heuristic three-step procedure, it is shown that these derivations can be simplified using Maple 2023 or manually. This confirms the exactness of the authors’ formulas, asserting their role as definitive closed-form solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics and Mechanics of Solids
Mathematics and Mechanics of Solids 工程技术-材料科学:综合
CiteScore
4.80
自引率
19.20%
发文量
159
审稿时长
1 months
期刊介绍: Mathematics and Mechanics of Solids is an international peer-reviewed journal that publishes the highest quality original innovative research in solid mechanics and materials science. The central aim of MMS is to publish original, well-written and self-contained research that elucidates the mechanical behaviour of solids with particular emphasis on mathematical principles. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信